Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38402460

RESUMEN

BACKGROUND: IgA nephropathy (IgAN) is a major cause of primary glomerulonephritis characterized by mesangial deposits of galactose-deficient IgA1 (Gd-IgA1). Toll-like receptors (TLRs), particularly TLR4 are involved in the pathogenesis of IgAN. The role of gut microbiota on IgAN patients was recently investigated. However, whether gut microbial modifications of Gd-IgA1 through TLR4 play a role in IgAN remains unclear. METHODS: We recruited subjects into four groups, including 48 patients with untreated IgAN, 22 treated IgAN patients (IgANIT), 22 primary membranous nephropathy (MN), and 31 healthy controls (HCs). Fecal samples were collected to analyze changes in gut microbiome. Gd-IgA1 levels, expression of TLR4, B-cell stimulators, and intestinal barrier function were evaluated in all subjects. C57BL/6 mice were treated with a broad-spectrum antibiotic cocktail to deplete the gut microbiota and then gavaged with fecal microbiota transplanted fromclinical subjects of every group. Gd-IgA1 and TLR4 pathway were detected in peripheral blood mononuclear cells (PBMCs) from IgAN and HCs co-incubated with Lipopolysaccharide (LPS) and TLR4 inhibitor. RESULTS: Compared with other three groups, different compositions and decreased diversity demonstrated gut dysbiosis in un-treated IgAN, especially the enrichment of Escherichia -Shigella. Elevated Gd-IgA1 levels were found in un-treated IgAN patients and correlated with gut dysbiosis, TLR4, B-cell stimulators, indexes of intestinal barrier damage, and proinflammatory cytokines. In vivo, mice colonized with gut microbiota from IgAN and IgANIT patients, copied the IgAN phenotype with the activation of TLR4/MyD88/NF-κB pathway, B-cell stimulators in the intestine, and complied with enhanced proinflammatory cytokines. In vitro, LPS activated TLR4/MyD88/NF-κB pathway, B-cell stimulators and proinflammatory cytokines in the PBMCs from IgAN patients, which resulted in overproduction of Gd-IgA1 and inhibited by TLR4 inhibitor. CONCLUSIONS: Our results illustrated that gut-kidney axis was involved in the pathogenesis of IgAN. Gut dysbiosis could stimulate the overproduction of Gd-IgA1 by TLR4 signaling pathway production and B-cell stimulators.

2.
Altern Ther Health Med ; 30(1): 419-425, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37820669

RESUMEN

Context: Studies have reported that the incidence and severity of IgA nephropathy (IgAN) are closely related to the imbalance of the intestinal flora. Imbalance of the intestinal flora may cause abnormalities, such as intestinal mucosal immunity or mesenteric B1 lymphocyte subsets. These can lead to an increase in immunoglobulin A (IgA) production and IgA structural changing, which can eventually cause IgA1 deposition in the glomerular mesangial area and nephritis. Objective: The study intended to explore whether the LPS/TLR4 pathway regulates mesenteric B cells, secreting Gd-IgA1 to induce IgA nephropathy. Design: The research team designed an animal study. Setting: The study took place at Department of Nephrology, Minhang Hospital, Fudan University. Animals: The animals were 60 specific pathogen free (SPF) C57BL/6 (B6, H-2b) male mice from that were 6-8 weeks old and weighed 20-25 grams. Intervention: The research team established a mouse model of IgA nephropathy. The team created five groups of mice: (1) the NC group, a normal negative control group without induced nephropathy and with no treatments; (2) the IgA nephropathy (IgAN) group, a positive control group with induced nephropathy and with no treatments; (3) the IgAN+anti-TLR4 group, an intervention group, with induced nephropathy and with a TLR4-antibody (anti-TLR4) treatment; (4) the IgAN+GEC group, an intervention group, with induced nephropathy and with treatment with glutamine enteric-coated capsules (GEC); and (5) the IgAN+anti-TLR4+GEC group, an intervention group, with induced nephropathy and with treatment with anti-TLR4 and GEC. Outcome Measures: The research team collected the blood and urine of all the mice and used an enzyme-linked immunoassay (ELISA) to analyze the levels of blood creatinine, urine protein, and urea nitrogen (BUN). The team also used the ELISA to analyze signal molecules for serum inflammation: interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP-1), cyclooxygenase-2 (COX2), and galactose-deficient IgA1(Gd-IgA1). The team analyzed the distribution and content of IgA+B220+B lymphocytes in the intestinal tissues of all the mice, using tissue immunofluorescence tracking technology, and used hematoxylin-eosin (HE) staining to analyze the pathological damage in the kidney tissue. For analysis of glomerular IgA deposition, the team used a tissue immunofluorescence technique, and for detection of protein expression-toll-like receptor 4 (TLR4), B-cell activating factor (BAFF), and a proliferation-inducing ligand (APRIL)-in mesenteric lymphoid tissues, the team used western blot analysis. Results: For the five groups of mice, the amount or degree of the physiological indicators and inflammatory factors that ELISA detected, the B lymphocytes and IgA sedimentation that immunofluorescence tracing measured, the kidney pathological that HE staining detected, and the expression of immune-related proteins that western blotting measured, all showed a common trend: IgAN group> IgAN+ glomerular endothelial cells (GEC) group> IgAN+anti-TLR4 group> IgAN+anti-TLR4+GEC group> NC group. Conclusions: The TLR4 antibody and GEC for the treatment of the intestinal tract can regulate and repair intestinal function, so that IgAN can also be relieved at the same time. The results supported the hypothesis that a relationship exists between IgAN and the LPS/TLR4 pathway that regulates mesenteric B cells to secrete low-glycosylated poly-IgA1, which provides a new potential therapeutic plan for IgA nephritis.


Asunto(s)
Glomerulonefritis por IGA , Nefritis , Humanos , Masculino , Ratones , Animales , Glomerulonefritis por IGA/metabolismo , Glomerulonefritis por IGA/patología , Receptor Toll-Like 4 , Lipopolisacáridos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ratones Endogámicos C57BL , Inmunoglobulina A/metabolismo
3.
Ren Fail ; 46(2): 2387429, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39132829

RESUMEN

Objectives: To investigate the role of the intestinal flora and metabolites in the development of hyperuricemic renal injury in chronic kidney disease (CKD).Methods: Unilaterally nephrectomized mice were fed with adenine and potassium oxonate for 9 weeks. HE staining combined with plasma biochemical indicators was used to evaluate renal pathological and functional changes. We conducted 16S rRNA sequencing and untargeted metabolomics on feces and plasma samples to reveale changes in intestinal microbiota and metabolites.Result: Our analysis revealed significant differences in 15 bacterial genera, with 7 being upregulated and 8 being downregulated. Furthermore, metabolomic analysis revealed changes in the distribution of amino acid and biotin metabolites in basic metabolic pathways in both feces and serum. Specifically, differentially abundant metabolites in feces were associated primarily with histidine metabolism; the biosynthesis of phenylalanine, tyrosine, and tryptophan; and tyrosine metabolism. In plasma, the differentially abundant metabolites were involved in multiple metabolic pathways, including aminoacyl-tRNA biosynthesis; glycine, serine, and threonine amino acid metabolism; valine, leucine, and isoleucine biosynthesis; tyrosine biosynthesis and metabolism; biotin metabolism; and taurine and hypotaurine metabolism. Furthermore, correlation analysis revealed that Akkermansia, UCG-005, Lachnospiraceae_NK4A136_group, Lactococcus, and Butymonas were associated with various differentially abundant metabolites as well as renal function, oxidative stress, and mitophagy. The changes in the intestinal flora observed in hyperuricemia may lead to imbalances in amino acid and biotin metabolism in both the intestine and host, ultimately affecting oxidative stress and mitophagy in mice and accelerating the progression of CKD.Conclusion: Our findings provide insights into a potential pathogenic mechanism by which hyperuricemia exacerbates renal injury in mice with renal insufficiency. Understanding these pathways may offer new therapeutic strategies for managing hyperuricemic renal injury in CKD patients.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Hiperuricemia , Animales , Hiperuricemia/metabolismo , Ratones , Masculino , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/microbiología , Metabolómica/métodos , Heces/microbiología , ARN Ribosómico 16S , Ratones Endogámicos C57BL , Riñón/metabolismo , Riñón/patología
4.
Kidney Blood Press Res ; 48(1): 261-276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36878203

RESUMEN

INTRODUCTION: Numerous research works have shown that serum Gal-deficient (Gd) IgA1 levels are increased in IgA nephropathy (IgAN) patients and these levels are a dangerous risk factor for IgAN. A relationship between the gut microbiota and IgAN has been reported. Whether the gut microbiota participates in the pathogenesis of IgAN was still controversial. METHODS: We evaluated changes in the gut flora and the levels of Gd-IgA1 in IgAN patients and healthy controls (HCs). We investigated the Gd-IgA1 levels in both blood and urine specimens. C57BL/6 mice were given a broad-spectrum antibiotic cocktail to deplete the endogenous gut flora. We established a model of IgAN in pseudosterile mice and investigated the expression of the markers of intestinal permeability, inflammation, and local immune responses. RESULTS: Studies have shown that the levels of certain gut flora differ between IgAN patients and HCs. Moreover, elevated Gd-IgA1 levels were found in both the serum and urine. Interestingly, Coprococcus, Dorea, Bifidobacterium, Blautia, and Lactococcus, selected from 10 candidate biomarkers to predict risk in IgAN patients according to random forest analysis, were inversely associated with urinary Gd-IgA1 levels. Notably, the urine level of Gd-IgA1 could best distinguish IgAN patients from HCs. Additionally, the degree of kidney damage in pseudosterile mice with IgAN was more severe than that in mice with IgAN. Furthermore, the markers of intestinal permeability were significantly elevated in pseudosterile IgAN mice. Moreover, the inflammation responses (TLR4, MyD88, and NF-κB in intestinal and renal tissues; TNF-α and IL-6 in serum) and local immune responses (BAFF and APRIL in intestinal tissue) were upregulated in pseudosterile IgAN mice. CONCLUSIONS: The urine Gd-IgA1 level may be as a biomarker for the early screening of potential IgAN, and gut microbiota dysbiosis was demonstrated in IgAN, which might involve the dysfunction of the mucosal barrier, inflammation, and local immune responses.


Asunto(s)
Microbioma Gastrointestinal , Glomerulonefritis por IGA , Humanos , Animales , Ratones , Glomerulonefritis por IGA/diagnóstico , Ratones Endogámicos C57BL , Inmunoglobulina A , Inflamación , Biomarcadores , Inmunidad
5.
Angew Chem Int Ed Engl ; 62(7): e202217249, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36509712

RESUMEN

As a conjugated and unsymmetric building block composed of an electron-poor seven-membered sp2 carbon ring and an electron-rich five-membered carbon ring, azulene and its derivatives have been recognized as one of the most promising building blocks for novel electronic devices due to its intrinsic redox activity. By using 1,3,5-tris(4-aminophenyl)-benzene and azulene-1,3-dicarbaldehyde as the starting materials, an azulene(Azu)-based 2D conjugated covalent organic framework, COF-Azu, is prepared through liquid-liquid interface polymerization strategy for the first time. The as-fabricated Al/COF-Azu/indium tin oxide (ITO) memristor shows typical non-volatile resistive switching performance due to the electric filed induced intramolecular charge transfer effect. Associated with the unique memristive performance, a simple convolutional neural network is built for image recognition. After 8 epochs of training, image recognition accuracy of 80 % for a neutral network trained on a larger data set is achieved.

6.
Kidney Blood Press Res ; 47(10): 631-642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35705063

RESUMEN

INTRODUCTION: Kidney transplantation (KT) has surpassed dialysis as the optimal therapy for end-stage kidney disease. Yet, most patients could suffer from a slow but continuous deterioration of kidney function leading to graft loss mostly due to chronic allograft nephropathy (CAN) after KT. The dysregulated gene expression for CAN is still poorly understood. METHODS: To explore the pathogenesis of genomics in CAN, we analyzed the differentially expressed genes (DEGs) of kidney transcriptome between CAN and nonrejecting patients by downloading gene expression microarrays from the Gene Expression Omnibus database. Then, we used weighted gene coexpression network analysis (WGCNA) to analyze the coexpression of DEGs to explore key modules, hub genes, and transcription factors in CAN. Functional enrichment analysis of key modules was performed to explore pathogenesis. ROC curve analysis was used to validate hub genes. RESULTS: As a result, 3 key modules and 15 hub genes were identified by WGCNA analysis. Three key modules had 21 mutual Gene Ontology term enrichment functions. Extracellular structure organization, extracellular matrix organization, and extracellular region were identified as significant functions in CAN. Furthermore, transcription factor 12 was identified as the key transcription factor regulating key modules. All 15 hub genes, Yip1 interacting factor homolog B, membrane trafficking protein, toll like receptor 8, neutrophil cytosolic factor 4, glutathione peroxidase 8, mesenteric estrogen dependent adipogenesis, decorin, serpin family F member 1, integrin subunit beta like 1, SRY-box transcription factor 15, trophinin associated protein, SRY-box transcription factor 1, metallothionein 3, lysosomal protein transmembrane, FERM domain containing kindlin 3, and cathepsin S, had a great diagnostic performance (AUC > 0.7). CONCLUSION: This study updates information and provides a new perspective for understanding the pathogenesis of CAN by bioinformatics means. More research is needed to validate and explore the results we have found to reveal the mechanisms underlying CAN.


Asunto(s)
Perfilación de la Expresión Génica , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Perfilación de la Expresión Génica/métodos , Diálisis Renal , Redes Reguladoras de Genes , Aloinjertos
7.
Appl Microbiol Biotechnol ; 106(7): 2637-2649, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35294590

RESUMEN

Oxalate-induced crystalline kidney injury is one of the most common types of crystalline nephropathy. Unfortunately, there is no effective treatment to reduce the deposition of calcium oxalate crystals and alleviate kidney damage. Thus, proactive therapeutic is urgently needed to alleviate the suffering it causes to patient. Here, we investigated whether IL-22 exerted nephroprotective effects to sodium oxalate-mediated kidney damage and its potential mechanism. Crystalline kidney injury models were developed in vitro and in vivo that was often observed in clinic. We provided evidence that IL-22 could effectively decrease the accumulation of ROS and mitochondrial damage in cell and animal models and reduce the death of TECs. Moreover, IL-22 decreased the expression of the NLRP3 inflammasome and mature IL-1ß in renal tissue induced by sodium oxalate. Further studies confirmed that IL-22 could play an anti-inflammatory role by reducing the levels of cytokines such as IL-1ß, IL-18, and TNF-α in serum. In conclusion, our study confirmed that IL-22 has protective effects on sodium oxalate-induced crystalline kidney injury by reducing the production of ROS, protecting mitochondrial membrane potential, and inhibiting the inflammatory response. Therefore, IL-22 may play a potential preventive role in sodium oxalate-induced acute renal injury. KEY POINTS: • IL-22 could reduce sodium oxalate-mediated cytotoxicity and ameliorate renal injury. • IL-22 could alleviate oxidative stress and mitochondrial dysfunction induced by sodium oxalate. • IL-22 could inhibit inflammatory response of renal injury caused by sodium oxalate.


Asunto(s)
Inflamación , Riñón , Animales , Oxalato de Calcio/metabolismo , Oxalato de Calcio/farmacología , Oxalato de Calcio/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Interleucinas , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Interleucina-22
8.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36501739

RESUMEN

The robotic navigation task is to find a collision-free path among a mass of stationary or migratory obstacles. Various well-established algorithms have been applied to solve navigation tasks. It is necessary to test the performance of designed navigation algorithms in practice. However, it seems an extremely unwise choice to implement them in a real environment directly unless their performance is guaranteed to be acceptable. Otherwise, it takes time to test navigation algorithms because of a long training process, and imperfect performance may cause damage if the robot collides with obstacles. Hence, it is of key significance to develop a mobile robot analysis platform to simulate the real environment which has the ability to replicate the exact application scenario and be operated in a simple manner. This paper introduces a brand new analysis platform named robot navigation analysis platform (RoNAP), which is an open-source platform developed using the Python environment. A user-friendly interface supports its realization for the evaluation of various navigation algorithms. A variety of existing algorithms were able to achieve desired test results on this platform, indicating its feasibility and efficiency for navigation algorithm analysis.


Asunto(s)
Algoritmos , Robótica , Robótica/métodos
9.
Eur Radiol ; 31(5): 3258-3266, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33159575

RESUMEN

OBJECTIVES: To determine if contrast-enhanced CT imaging performed in patients during their episode of AKI contributes to major adverse kidney events (MAKE). METHODS: A propensity score-matched analysis of 1127 patients with AKI defined by KDIGO criteria was done. Their mean age was 63 ± 16 years with 56% males. A total of 419 cases exposed to CT contrast peri-AKI were matched with 798 non-exposed controls for 14 covariates including comorbidities, acute illnesses, and initial AKI severity; outcomes including MAKE and renal recovery in hospital were compared using bivariate analysis and logistic regression. MAKE was a composite of mortality, renal replacement therapy, and doubling of serum creatinine on discharge over baseline; renal recovery was classified as early versus late based on a 7-day timeline from AKI onset to nadir creatinine or cessation of renal replacement therapy in survivors. RESULTS: Sixty-two patients received cumulatively > 100 mL of CT contrast, 143 patients had > 50-100 mL, and 214 patients had 50 mL or less; MAKE occurred in 34%, 17%, and 21%, respectively, as compared with 20% in non-exposed controls (p = 0.008 for patients with > 100 mL contrast versus none). More contrast-exposed patients experienced late renal recovery (27% versus 20%) and longer hospital days (median 10 versus 8) than non-exposed patients (all p < 0.01). On multivariate analysis, cumulative CT contrast > 100 mL was independently associated with MAKE (odds ratio 2.39 versus non-contrast, adjusted for all confounders, p = 0.005); cumulative CT contrast under 100 mL was not associated with MAKE. CONCLUSIONS: High cumulative volume of CT contrast administered to patients with AKI is associated with worse short-term renal outcomes and delayed renal recovery. KEY POINTS: • Cumulative intravenous iodinated contrast for CT imaging of more than 100 mL, during an episode of acute kidney injury, was independently associated with worse renal outcomes and less renal recovery. • These adverse outcomes including renal replacement therapy were not more frequent in similar patients who received cumulatively 100 mL or less of CT contrast, compared with non-exposed patients. • More patients with CT contrast exposure during acute kidney injury experienced delayed renal recovery.


Asunto(s)
Lesión Renal Aguda , Lesión Renal Aguda/inducido químicamente , Anciano , Femenino , Humanos , Riñón , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Tomografía Computarizada por Rayos X
10.
J Cell Physiol ; 234(7): 11882-11887, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30536550

RESUMEN

OBJECTIVE: This study aimed to explore the underlying function of Gubenxiezhuo dialysis on the distribution of gut microflora uremia. METHODS: A uremia rat model was constructed, and the morphology of renal tissue was determined using the hematoxylin-eosin (H&E) staining. Moreover, the blood samples were collected and the expression of IL-1ß, IL-6, and CRP was determined using enzyme-linked immunosorbent assay. Following these experiments, the gut tissues of rats were collected and the distribution of gut microbiota was explored using real-time PCR. RESULTS: Compared with the control group, inflammatory infiltration, apoptosis, and bleeding were significantly upregulated in kidney of uremia rats, and Gubenxiezhuo dialysis could obviously ameliorate these changes. Expression of IL-1ß, IL-6, and CRP were significantly elevated in uremic rats and Gubenxiezhuo could significantly attenuate these elevations (p < 0.01). In addition, Gubenxiezhuo dialysis also could attenuate the upregulations of Acinetobacter, Bacillus cereus, Proteus vulgaris, Shigella flexneri, and Escherichia coli , and the downregulation of Bifidobacterium, Lactobacillus, and Helicobacter in the uremia rats ( p < 0.05). CONCLUSION: Gubenxiezhuo dialysis could significantly ameliorate the inflammatory to modulate the distribution of gut microbiota in uremia.


Asunto(s)
Colon/metabolismo , Microbioma Gastrointestinal/fisiología , Inflamación/metabolismo , Lactobacillus/metabolismo , Insuficiencia Renal/metabolismo , Animales , Masculino , Ratas Wistar , Diálisis Renal/métodos , Uremia
11.
Int J Chron Obstruct Pulmon Dis ; 19: 1819-1834, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39140079

RESUMEN

Purpose: Sangbaipi decoction (SBPD), a traditional Chinese medicine (TCM) prescription, has been widely used to treat acute exacerbation of chronic obstructive pulmonary disease (AECOPD), while the underlying pharmacological mechanism remains unclear due to the complexity of composition. Methods: A TCM-active ingredient-drug target network of SBPD was constructed utilizing the TCM-Systems-Pharmacology database. AECOPD-relevant proteins were gathered from Gene Cards and the Online-Mendelian-Inheritance-in-Man database. Protein-protein interaction, GO and KEGG enrichment analyses of the targets from the intersection of SBPD and AECOPD targets were performed to identify the core signaling pathway, followed by molecular docking verification of its interaction with active ingredients. The network pharmacology results were checked using in-vivo experiments. To induce AECOPD, rats were exposure to combined tobacco smoke and lipopolysaccharide (LPS). Then rats underwent gavage with stigmasterol (SM) after successful modeling. The involvement of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling was investigated using its inhibitor, LY294002. Lung function and histopathology were examined. The levels of inflammatory cytokines in the lung and serum were assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot and/or Enzyme-linked immunosorbent assay (ELISA). Results: SM was recognized as an active ingredient of SBPD and stably bound to Akt1. SM improved lung function and histological abnormalities, concomitant with suppressed PI3K/Akt signaling, downregulated lung and serum Interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) levels and serum transforming growth factor-ß (TGF-ß) levels and upregulated lung and serum Interleukin 10 (IL-10) levels in AECOPD rats. In AECOPD rats, LY294002 restored lung function, and it also improved lung histological abnormalities and inflammation, which was found to be potentiated by SM. Conclusion: SM targets PI3K/Akt signaling to reduce lung injury and inflammation in AECOPD rats.


Asunto(s)
Medicamentos Herbarios Chinos , Pulmón , Farmacología en Red , Fosfatidilinositol 3-Quinasa , Proteínas Proto-Oncogénicas c-akt , Enfermedad Pulmonar Obstructiva Crónica , Estigmasterol , Animales , Masculino , Ratas , Antiinflamatorios/farmacología , Cromonas/farmacología , Citocinas/metabolismo , Citocinas/sangre , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Medicamentos Herbarios Chinos/farmacología , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Pulmón/fisiopatología , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Estigmasterol/farmacología
12.
J Hazard Mater ; 465: 133455, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38211521

RESUMEN

Microplastics (MPs) commonly coexist with other contaminants and alter their toxicity. Perfluorooctanoic acid (PFOA), an emerging pollutant, may interact with MPs but remain largely unknown about the joint toxicity of PFOA and MPs. Hence, this research explored the single and joint effects of PFOA and polystyrene microplastics (PS-MPs) on microalgae (Chlorella sorokiniana) at the cellular and molecular levels. Results demonstrated that PS-MPs increased PFOA bioavailability by altering cell membrane permeability, thus aggravating biotoxicity (synergistic effect). Meanwhile, the defense mechanisms (antioxidant system modulation and extracellular polymeric substances secretion) of Chlorella sorokiniana were activated to alleviate toxicity. Additionally, transcriptomic analysis illustrated that co-exposure had more differential expression genes (DEGs; 4379 DEGs) than single-exposure (PFOA: 2533 DEGs; PS-MPs: 492 DEGs), which were mainly distributed in the GO terms associated with the membrane composition and antioxidant system. The molecular regulatory network further revealed that PS-MPs and PFOA primarily regulated the response mechanisms of Chlorella sorokiniana by altering the ribosome biogenesis, photosynthesis, citrate cycle, oxidative stress, and antioxidant system (antioxidant enzyme, glutathione-ascorbate cycle). These findings elucidated that PS-MPs enhanced the effect of PFOA, providing new insights into the influences of MPs and PFOA on algae and the risk assessment of multiple contaminants. ENVIRONMENTAL IMPLICATION: MPs and PFAS, emerging contaminants, are difficult to degrade and pose a non-negligible threat to organisms. Co-pollution of MPs and PFAS is ubiquitous in the aquatic environment, while risks of co-existence to organisms remain unknown. The present study revealed the toxicity and defense mechanisms of microalgae exposure to PS-MPs and PFOA from cellular and molecular levels. According to biochemical and transcriptomic analyses, PS-MPs increased PFOA bioavailability and enhanced the effect of PFOA on Chlorella sorokiniana, showing a synergistic effect. This research provides a basis for assessing the eco-environmental risks of MPs and PFAS.


Asunto(s)
Caprilatos , Chlorella , Fluorocarburos , Microalgas , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Poliestirenos/toxicidad , Plásticos/metabolismo , Antioxidantes/metabolismo , Contaminantes Químicos del Agua/toxicidad , Fluorocarburos/metabolismo , Microalgas/metabolismo
13.
Bioresour Technol ; 408: 131140, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39069140

RESUMEN

The long acclimation period and sensitivity to environmental conditions of Anammox are the bottlenecks for its promotion and application. An innovative strategy was adopted to accelerate functional microbial enhancement and improve nitrogen removal performance by inoculating cryopreserved Anammox sludge and activated sludge with intermittent dosing of nanoscale zero-valent iron (nZVI). The acclimation time was shortened by 76 days with nitrogen removal efficiency (NRE) reaching up to 91.07 %. Anammox, NDFO (nitrate/nitrite-dependent Fe(II) oxidation), Feammox (Fe(III) reduction coupled with anaerobic ammonium oxidation) and abiotic reactions were coupled in the system with nZVI, contributing to 69.79 %, 15.14 %, 9.84 % and 0.25 % of nitrogen removal, respectively. Further microbial analysis demonstrated significant enrichment of functional microorganisms, such as Candidatus Jettenia, Acidovorax and Comamonas. High-efficient nitrogen removal was attribute to the increase of functional genes involved in Anammox, electronic transfer, heme C synthesis and iron metabolism. This work provides an inspiring idea for the mainstream Anammox application.


Asunto(s)
Hierro , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Hierro/química , Aguas del Alcantarillado/microbiología , Anaerobiosis , Estudios de Factibilidad , Reactores Biológicos , Hemo/análogos & derivados , Bacterias/metabolismo , Nanopartículas del Metal/química
14.
Artículo en Inglés | MEDLINE | ID: mdl-38241004

RESUMEN

As some of the most promising candidates for constituting bioinspired electronics, polymer memristors with analog-type switching behavior exhibit great potential for synaptic mimicking and neuromorphic computing systems. By using highly soluble conjugated polyelectrolyte poly[9,9-bis(6-(3-methyl-1-imidazolium-yl)hexyl)fluorene]-covalently modified black phosphorus (BP) nanomaterial (BP-PF-NMI+Br-) as the active layer, an electronic device with the BP-PF-NMI+Br- film sandwiched between the aluminum and indium tin oxide electrodes is successfully fabricated. This device exhibits an excellent amount of electricity-dependent memristive performance at a small sweep voltage range of ±1 V. With increasing amount of electricity flowing through the device, the device resistance gradually decreased in a linear pattern. The changes in frequency, amplitude, and duration of voltage pulses do not affect the linear relationship between the amount of electricity passing through the device and the resistance value achieved after each state reached equilibrium at different numbers of the same voltage pulse stimulations. Both the synaptic potentiation/depression and learning/memorizing/forgetting functions of biological systems have been emulated. In contrast to BP-PF-NMI+Br-, the pure PF-NMI+Br--based device shows a write-once-read-many-times effect at the same scanning voltage range, while the BP:PF-NMI+Br- blends exhibit very unstable memristive performances.

15.
Autophagy ; : 1-17, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38873928

RESUMEN

Osteopenia and osteoporosis are among the most common metabolic bone diseases and represent major public health problems, with sufferers having an increased fracture risk. Diabetes is one of the most common diseases contributing to osteopenia and osteoporosis. However, the mechanisms underlying diabetes-induced osteopenia and osteoporosis remain unclear. Bone reconstruction, including bone formation and absorption, is a dynamic process. Large-conductance Ca2+-activated K+ channels (BK channels) regulate the function of bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts. Our previous studies revealed the relationship between BK channels and the function of osteoblasts via various pathways under physiological conditions. In this study, we reported a decrease in the expression of BK channels in mice with diabetes-induced osteopenia. BK deficiency enhanced mitochondrial Ca2+ and activated classical PINK1 (PTEN induced putative kinase 1)-PRKN/Parkin (parkin RBR E3 ubiquitin protein ligase)-dependent mitophagy, whereas the upregulation of BK channels inhibited mitophagy in osteoblasts. Moreover, SLC25A5/ANT2 (solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5), a critical inner mitochondrial membrane protein participating in PINK1-PRKN-dependent mitophagy, was also regulated by BK channels. Overall, these data identified a novel role of BK channels in regulating mitophagy in osteoblasts, which might be a potential target for diabetes-induced bone diseases.Abbreviations: AGE, advanced glycation end products; Baf A1, bafilomycin A1; BK channels, big-conductance Ca2+-activated K+ channels; BMSCs, bone marrow-derived mesenchymal stem cells; BSA, bovine serum albumin; FBG, fasting blood glucose; IMM, inner mitochondrial membrane; ITPR1, inositol 1,4,5-trisphosphate receptor 1; MAM, mitochondria-associated ER membrane; OMM, outer mitochondrial membrane; PINK1, PTEN induced putative kinase 1; PPID/CyP-D, peptidylprolyl isomerase D (cyclophilin D); PRKN/PARK2, parkin RBR E3 ubiquitin protein ligase; ROS, reactive oxygen species; SLC25A5/ANT2, solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5; STZ, streptozotocin.

16.
Mater Horiz ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953878

RESUMEN

Affective computing, representing the forefront of human-machine interaction, is confronted with the pressing challenges of the execution speed and power consumption brought by the transmission of massive data. Herein, we introduce a bionic organic memristor inspired by the ligand-gated ion channels (LGICs) to facilitate near-sensor affective computing based on electroencephalography (EEG). It is constructed from a coordination polymer comprising Co ions and benzothiadiazole (Co-BTA), featuring multiple switching sites for redox reactions. Through advanced characterizations and theoretical calculations, we demonstrate that when subjected to a bias voltage, only the site where Co ions bind with N atoms from four BTA molecules becomes activated, while others remain inert. This remarkable phenomenon resembles the selective in situ activation of LGICs on the postsynaptic membrane for neural signal regulation. Consequently, the bionic organic memristor network exhibits outstanding reliability (200 000 cycles), exceptional integration level (210 pixels), ultra-low energy consumption (4.05 pJ), and fast switching speed (94 ns). Moreover, the built near-sensor system based on it achieves emotion recognition with an accuracy exceeding 95%. This research substantively adds to the ambition of realizing empathetic interaction and presents an appealing bionic approach for the development of novel electronic devices.

17.
Mater Horiz ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101227

RESUMEN

Correction for 'Affective computing for human-machine interaction via a bionic organic memristor exhibiting selective in situ activation' by Bingjie Guo et al., Mater. Horiz., 2024, https://doi.org/10.1039/D3MH01950K.

18.
Int J Artif Organs ; 46(6): 351-360, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37151025

RESUMEN

The incidence of clinical complication gastrointestinal bleeding has been proved as consequence of von Willebrand factor (VWF) damage after mechanical circulatory support in clinic. Many studies have been conducted to evaluate VWF damage, of which the most studied influencing factors are mechanical factors such as shear stress. However, in addition to mechanical factors, VWF damage may also be affected by interface factors. To address this issue, a roller pump circulation platform was established to investigate the effect of material surface micron-scale structures distribution on VWF damage in flow state. A composite micro-structure combining microngrating and micronpost was designed and constructed on the surface of Si wafer by lithography and reactive ion etching, and detailed characterization of material surfaces was also performed. Then the changes of VWF antigen, VWF ristocetin cofactor activity, and the degradation of high molecular weight VWF on these surfaces were investigated and compared. The results showed that, with the encryption of surface micro-structures arrangement, the material surface tends to be more hydrophobic, which is beneficial to reduce VWF damage. Therefore, in the design of material surface inside the mechanical circulatory support devices, it can be considered to add some surface micro-structures with a certain distribution density to change the hydrophilicity and hydrophobicity, so as to minimize the VWF damage. These results can provide important references for the evaluation of VWF damage caused by interface factors, and aid in designing material surface inside the mechanical circulatory support devices.


Asunto(s)
Corazón Auxiliar , Factor de von Willebrand , Humanos , Factor de von Willebrand/metabolismo , Hemorragia Gastrointestinal , Estrés Mecánico , Incidencia
19.
Heliyon ; 9(9): e20328, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809388

RESUMEN

Object: This study aims to investigate the changes in gut microbiota and metabolism of patients with chronic kidney disease (CKD) stage 1-2, as well as the potential impact of hyperuricemia (HUA) on these factors in CKD stage 1-2 patients. Methods: In this study, fecal samples were collected from CKD stage 1-2 without HUA patients (CKD-N group), CKD stage 1-2 with HUA patients (CKD-H group), and healthy people controls (HCs group). The samples were then subjected to the microbiome (16S rRNA gene sequencing) and metabolome (liquid chromatography-tandem mass spectrometry) analyses. The multi-omics datasets were analyzed individually and integrated for combined analysis using various bioinformatics approaches. Results: Gut microbial dysbiosis was found in CKD-N and CKD-H patients. At the phylum level, compared to HCs group, Bacteroidetes decreased but Proteobacteria increased in CKD-H group significantly. Fusobacteria in CKD-N group was significantly lower than HCs group. At genus level, [Eubacterium]_ventriosum_group, Fusobacterium, Agathobacter, Parabacteroides, and Roseburia significantly changed in CKD groups. [Ruminococcus]_gnavus_group was significantly lower in CKD-H group than CKD-N group. Moreover, the fecal metabolome of CKD-N and CKD-H altered significantly. d-glutamine and d-glutamate metabolism, arginine and proline metabolism, histidine metabolism, and lysine biosynthesis were down-regulated in the CKD-N group. Phenylalanine metabolism, arginine and proline metabolism, purine metabolism, and beta-alanine metabolism were up-regulated in the CKD-H group. There was a significant difference between the two CKD groups in phenylalanine metabolism. The abundance change of [Ruminococcus]_gnavus_group, [Eubacterium]_ventriosum_group, UCG-002, Alistipes, and Bifidobacterium had a close correlation with differential metabolites. Conclusion: The gut microbiota and metabolic status undergo significant changes in CKD patients compared to healthy people. Additionally, HUA has been found to impact the gut microbiota of CKD patients, as well as their metabolism. The close association between gut microbiota and metabolites suggests that the former plays a crucial role in metabolism.

20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(10): 865-871, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-37882709

RESUMEN

Objective To investigate the effect of intestinal mucosal Toll-like receptor 4/nuclear factor κB (TLR4/NF-κB) signaling pathway on renal damage in pseudo-sterile IgA nephropathy (IgAN) mice. Methods C57BL/6 mice were randomly divided into experimental group (pseudosterile mouse model group), control group (IgAN mouse model group), pseudosterile mouse blank group, and normal mouse blank group. Pseudosterile mice were established by intragastric administration of quadruple antibiotics once a day for 14 days. The pseudosterile IgAN mouse model was set up by combination of oral bovine serum albumin (BSA) administration and staphylococcal enterotoxin B (SEB) injection. The pathological changes of renal tissue were observed by immunofluorescence staining and PAS staining, and the intestinal mucosa barrier damage indicators lipopolysaccharide(LPS), soluble intercellular adhesion molecule 1(sICAM-1) and D-lactate(D-LAC) were analyzed by ELISA. Biochemical analysis was used to test 24 hour urine protein, serum creatinine and blood urea nitrogen. The mRNA and protein levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear factor κB (NF-κB) were detected by reverse transcription PCR and Western blot analysis. Results The kidney damage of pseudosterile IgAN mice was more severe than that of IgAN mice, and the expressions of intestinal mucosal barrier damage markers (LPS, sICAM-1 and D-LAC) were significantly increased in pseudosterile IgAN mice. In addition, the expressions of TLR4, MyD88, and NF-κB level were all up-regulated in the intestinal tissues of IgAN pseudosterile mice. Conclusion Intestinal flora disturbance leads to intestinal mucosal barrier damage and induces activation of TLR4 signaling pathway to mediate renal injury in IgAN.


Asunto(s)
Glomerulonefritis por IGA , Infertilidad , Animales , Ratones , Ratones Endogámicos C57BL , FN-kappa B , Receptor Toll-Like 4/genética , Lipopolisacáridos , Factor 88 de Diferenciación Mieloide/genética , Riñón , Mucosa Intestinal , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA