Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614218

RESUMEN

The xyloglucan endotransglucosylase/hydrolase (XET/XEH, also named XTH) family is a multigene family, the function of which plays a significant role in cell-wall rebuilding and stress tolerance in plants. However, the specific traits of the XTH gene family members and their expression pattern in different tissues and under stress have not been carried out in sweet potato. Thirty-six XTH genes were identified in I. batatas, all of which had conserved structures (Glyco_hydro_16). Based on Neighbor-Joining phylogenetic analysis the IbXTHs can be divided into three subfamilies-the I/II, IIIA, and IIIB subfamilies, which were unevenly distributed on 13 chromosomes, with the exception of Chr9 and Chr15. Multiple cis-acting regions related to growth and development, as well as stress responses, may be found in the IbXTH gene promoters. The segmental duplication occurrences greatly aided the evolution of IbXTHs. The results of a collinearity analysis showed that the XTH genes of sweet potato shared evolutionary history with three additional species, including A. thaliana, G. max, and O. sativa. Additionally, based on the transcriptome sequencing data, the results revealed that the IbXTHs have different expression patterns in leaves, stems, the root body (RB), the distal end (DE), the root stock (RS), the proximal end (PE), the initiative storage root (ISR), and the fibrous root (FR), and many of them are well expressed in the roots. Differentially expressed gene (DEG) analysis of FRs after hormone treatment of the roots indicated that IbXTH28 and IbXTH30 are up-regulated under salicylic acid (SA) treatment but down-regulated under methyl jasmonate (MeJA) treatment. Attentionally, there were only two genes showing down-regulation under the cold and drought treatment. Collectively, all of the findings suggested that genes from the XTH family are crucial for root specificity. This study could provide a theoretical basis for further research on the molecular function of sweet potato XTH genes.


Asunto(s)
Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Filogenia , Glicosiltransferasas/metabolismo , Hidrolasas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Front Cardiovasc Med ; 9: 924551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966555

RESUMEN

Foam cell formation is the hallmark of the development and progression of atherosclerosis. The aim of this study was to investigate the regulatory effects of three polymethoxyflavones (PMFs), namely, tangeretin (TAN), 5,6,7,3',4',5'-hexamethoxyflavone (HxMF), and 3,5,6,7,8,3',4'-heptamethoxyflavone (HpMF) on macrophage-derived foam cell formation and to further explore the molecular mechanisms. The RAW264.7 macrophage-derived foam cell model was successfully induced by oxidized low-density lipoprotein (ox-LDL) (80 µg/ml). It showed that TAN, HxMF, and HpMF alleviated ox-LDL-induced NO release while also inhibiting the expression of IL-1ß, IL-6, and TNF-α in RAW264.7 cells. Uptake of excess ox-LDL was inhibited by TAN, HxMF, and HpMF, resulting in the reduction of its foam cell formation. Moreover, TAN, HxMF, and HpMF promoted HDL-mediated cholesterol efflux. Western blot experiment showed that TAN, HxMF, and HpMF inhibited the expression of scavenger receptor class A type I (SRA1) and cluster of differentiation 36 (CD36), while upregulating peroxisome proliferator-activated receptor γ (PPARγ), liver X receptor α (LXRα), phospholipid ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor class B type I (SRB1) expression. Together, our findings suggested that PMFs inhibited foam cell formation might inhibit lipid uptake via downregulating SRA1/CD36 expression and promote cholesterol efflux from foam cells via upregulating PPARγ/LXRα/ABCG1/SRB1 expression. This antiatherosclerotic activity is expected to provide new insights into the development of healthcare uses for PMFs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA