Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 626(7999): 523-528, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356068

RESUMEN

Spatial, momentum and energy separation of electronic spins in condensed-matter systems guides the development of new devices in which spin-polarized current is generated and manipulated1-3. Recent attention on a set of previously overlooked symmetry operations in magnetic materials4 leads to the emergence of a new type of spin splitting, enabling giant and momentum-dependent spin polarization of energy bands on selected antiferromagnets5-10. Despite the ever-growing theoretical predictions, the direct spectroscopic proof of such spin splitting is still lacking. Here we provide solid spectroscopic and computational evidence for the existence of such materials. In the noncoplanar antiferromagnet manganese ditelluride (MnTe2), the in-plane components of spin are found to be antisymmetric about the high-symmetry planes of the Brillouin zone, comprising a plaid-like spin texture in the antiferromagnetic (AFM) ground state. Such an unconventional spin pattern, further found to diminish at the high-temperature paramagnetic state, originates from the intrinsic AFM order instead of spin-orbit coupling (SOC). Our finding demonstrates a new type of quadratic spin texture induced by time-reversal breaking, placing AFM spintronics on a firm basis and paving the way for studying exotic quantum phenomena in related materials.

2.
Nature ; 617(7961): 493-498, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36889355

RESUMEN

Photocathodes-materials that convert photons into electrons through a phenomenon known as the photoelectric effect-are important for many modern technologies that rely on light detection or electron-beam generation1-3. However, current photocathodes are based on conventional metals and semiconductors that were mostly discovered six decades ago with sound theoretical underpinnings4,5. Progress in this field has been limited to refinements in photocathode performance based on sophisticated materials engineering1,6. Here we report unusual photoemission properties of the reconstructed surface of single crystals of the perovskite oxide SrTiO3(100), which were prepared by simple vacuum annealing. These properties are different from the existing theoretical descriptions4,7-10. In contrast to other photocathodes with a positive electron affinity, our SrTiO3 surface produces, at room temperature, discrete secondary photoemission spectra, which are characteristic of efficient photocathode materials with a negative electron affinity11,12. At low temperatures, the photoemission peak intensity is enhanced substantially and the electron beam obtained from non-threshold excitations shows longitudinal and transverse coherence that differs from previous results by at least an order of magnitude6,13,14. The observed emergence of coherence in secondary photoemission points to the development of a previously undescribed underlying process in addition to those of the current theoretical photoemission framework. SrTiO3 is an example of a fundamentally new class of photocathode quantum materials that could be used for applications that require intense coherent electron beams, without the need for monochromatic excitations.

3.
Nature ; 618(7963): 80-86, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990110

RESUMEN

All-perovskite tandem solar cells provide high power conversion efficiency at a low cost1-4. Rapid efficiency improvement in small-area (<0.1 cm2) tandem solar cells has been primarily driven by advances in low-bandgap (approximately 1.25 eV) perovskite bottom subcells5-7. However, unsolved issues remain for wide-bandgap (> 1.75 eV) perovskite top subcells8, which at present have large voltage and fill factor losses, particularly for large-area (>1 cm2) tandem solar cells. Here we develop a self-assembled monolayer of (4-(7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid as a hole-selective layer for wide-bandgap perovskite solar cells, which facilitates subsequent growth of high-quality wide-bandgap perovskite over a large area with suppressed interfacial non-radiative recombination, enabling efficient hole extraction. By integrating (4-(7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid in devices, we demonstrate a high open-circuit voltage (VOC) of 1.31 V in a 1.77-eV perovskite solar cell, corresponding to a very low VOC deficit of 0.46 V (with respect to the bandgap). With these wide-bandgap perovskite subcells, we report 27.0% (26.4% certified stabilized) monolithic all-perovskite tandem solar cells with an aperture area of 1.044 cm2. The certified tandem cell shows an outstanding combination of a high VOC of 2.12 V and a fill factor of 82.6%. Our demonstration of the large-area tandem solar cells with high certified efficiency is a key step towards scaling up all-perovskite tandem photovoltaic technology.

4.
Plant Cell ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735686

RESUMEN

Increasing grain yield is a major goal of breeders due to the rising global demand for food. We previously reported that the miR397-LACCASE (OsLAC) module regulates brassinosteroid (BR) signaling and grain yield in rice (Oryza sativa). However, the precise roles of laccase enzymes in the BR pathway remain unclear. Here, we report that OsLAC controls grain yield by preventing the turnover of TRANSTHYRETIN-LIKE (OsTTL), a negative regulator of BR signaling. Overexpressing OsTTL decreased BR sensitivity in rice, while loss-of-function of OsTTL led to enhanced BR signaling and increased grain yield. OsLAC directly binds to OsTTL and regulates its phosphorylation-mediated turnover. The phosphorylation site Ser226 of OsTTL is essential for its ubiquitination and degradation. Overexpressing the dephosphorylation-mimic form of OsTTL (OsTTLS226A) resulted in more severe defects than did overexpressing OsTTL. These findings provide insight into the role of an ancient laccase in BR signaling and suggest that the OsLAC-OsTTL module could serve as a target for improving grain yield.

5.
Proc Natl Acad Sci U S A ; 121(11): e2304360121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457517

RESUMEN

The interplay of charge, spin, lattice, and orbital degrees of freedom in correlated materials often leads to rich and exotic properties. Recent studies have brought new perspectives to bosonic collective excitations in correlated materials. For example, inelastic neutron scattering experiments revealed non-trivial band topology for magnons and spin-orbit excitons (SOEs) in a quantum magnet CoTiO3 (CTO). Here, we report phonon properties resulting from a combination of strong spin-orbit coupling, large crystal field splitting, and trigonal distortion in CTO. Specifically, the interaction between SOEs and phonons endows chirality to two [Formula: see text] phonon modes and leads to large phonon magnetic moments observed in magneto-Raman spectra. The remarkably strong magneto-phononic effect originates from the hybridization of SOEs and phonons due to their close energy proximity. While chiral phonons have been associated with electronic topology in some materials, our work suggests opportunities may arise by exploring chiral phonons coupled to topological bosons.

6.
Proc Natl Acad Sci U S A ; 120(51): e2303075120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38100414

RESUMEN

Adipose tissue macrophages (ATM) are key players in the development of obesity and associated metabolic inflammation which contributes to systemic metabolic dysfunction. We here found that fibroblast activation protein α (FAP), a well-known marker of cancer-associated fibroblast, is selectively expressed in murine and human ATM among adipose tissue-infiltrating leukocytes. Macrophage FAP deficiency protects mice against diet-induced obesity and proinflammatory macrophage infiltration in obese adipose tissues, thereby alleviating hepatic steatosis and insulin resistance. Mechanistically, FAP specifically mediates monocyte chemokine protein CCL8 expression by ATM, which is further upregulated upon high-fat-diet (HFD) feeding, contributing to the recruitment of monocyte-derived proinflammatory macrophages with no effect on their classical inflammatory activation. CCL8 overexpression restores HFD-induced metabolic phenotypes in the absence of FAP. Moreover, macrophage FAP deficiency enhances energy expenditure and oxygen consumption preceding differential body weight after HFD feeding. Such enhanced energy expenditure is associated with increased levels of norepinephrine (NE) and lipolysis in white adipose tissues, likely due to decreased expression of monoamine oxidase, a NE degradation enzyme, by Fap-/- ATM. Collectively, our study identifies FAP as a previously unrecognized regulator of ATM function contributing to diet-induced obesity and metabolic inflammation and suggests FAP as a potential immunotherapeutic target against metabolic disorders.


Asunto(s)
Tejido Adiposo , Resistencia a la Insulina , Animales , Humanos , Ratones , Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(29): e2205574119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858331

RESUMEN

Intestinal barrier immunity is essential for controlling gut microbiota without eliciting harmful immune responses, while its defect contributes to the breakdown of intestinal homeostasis and colitis development. Chemerin, which is abundantly expressed in barrier tissues, has been demonstrated to regulate tissue inflammation via CMKLR1, its functional receptor. Several studies have reported the association between increased expression of chemerin-CMKLR1 and disease severity and immunotherapy resistance in inflammatory bowel disease (IBD) patients. However, the pathophysiological role of endogenous chemerin-CMKLR1 signaling in intestinal homeostasis remains elusive. We herein demonstrated that deficiency of chemerin or intestinal epithelial cell (IEC)-specific CMKLR1 conferred high susceptibility to microbiota-driven neutrophilic colon inflammation and subsequent tumorigenesis in mice following epithelial injury. Unexpectedly, we found that lack of chemerin-CMKLR1 signaling specifically reduced expression of lactoperoxidase (LPO), a peroxidase that is predominantly expressed in colonic ECs and utilizes H2O2 to oxidize thiocyanates to the antibiotic compound, thereby leading to the outgrowth and mucosal invasion of gram-negative bacteria and dysregulated CXCL1/2-mediated neutrophilia. Importantly, decreased LPO expression was causally linked to aggravated microbiota-driven colitis and associated tumorigenesis, as LPO supplementation could completely rescue such phenotypes in mice deficient in epithelial chemerin-CMKLR1 signaling. Moreover, epithelial chemerin-CMKLR1 signaling is necessary for early host defense against bacterial infection in an LPO-dependent manner. Collectively, our study reveals that the chemerin-CMKLR1/LPO axis represents an unrecognized immune mechanism that potentiates epithelial antimicrobial defense and restricts harmful colonic neutrophilia and suggests that LPO supplementation may be beneficial for microbiota dysbiosis in IBD patients with a defective innate antimicrobial mechanism.


Asunto(s)
Carcinogénesis , Quimiocinas , Colitis , Colon , Microbioma Gastrointestinal , Péptidos y Proteínas de Señalización Intercelular , Lactoperoxidasa , Receptores de Quimiocina , Animales , Carcinogénesis/inmunología , Transformación Celular Neoplásica , Quimiocinas/genética , Quimiocinas/metabolismo , Colitis/inmunología , Colitis/microbiología , Colon/inmunología , Colon/microbiología , Peróxido de Hidrógeno/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Lactoperoxidasa/metabolismo , Ratones , Neutrófilos/inmunología , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo
8.
Am J Respir Cell Mol Biol ; 71(1): 66-80, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38574235

RESUMEN

The role of endothelial cells in acute lung injury (ALI) has been widely elaborated, but little is known about the role of different subtypes of endothelial cells in ALI. ALI models were established by lipopolysaccharide. Single-cell RNA sequencing was used to identify differential molecules in endothelial subtypes and the heterogeneity of lung immune cells. Specific antibodies were used to block insulin-like growth factor binding protein 7 (IGFBP7), and AAVshIGP7 was used to specifically knock down IGFBP7. Here, we found that IGFBP7 was the most differentially expressed molecule in diverse subsets of endothelial cells and that IGFBP7 was strongly associated with inflammatory responses. Elevated IGFBP7 significantly exacerbated barrier dysfunction in ALI, whereas blockade of IGFBP7 partially reversed barrier damage. General capillary cells are the primary source of elevated serum IGFBP7 after ALI. Using single-cell RNA sequencing, we identified significantly increased Clec4nhi neutrophils in mice with ALI, whereas IGFBP7 knockdown significantly reduced infiltration of Clec4nhi cells and mitigated barrier dysfunction in ALI. In addition, we found that IGFBP7 activated the NF-κB signaling axis by promoting phosphorylation and ubiquitination degradation of F-box/WD repeat-containing protein 2 (FBXW2), thereby exacerbating barrier dysfunction in ALI. Taken together, our data indicate that blockade of serum IGFBP7 or IGFBP7 depletion in general capillary cells reversed barrier damage in ALI. Therefore, targeting IGFBP7 depletion could be a novel strategy for treating ALI.


Asunto(s)
Lesión Pulmonar Aguda , Células Endoteliales , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina , Neutrófilos , Animales , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Neutrófilos/metabolismo , Ratones , Ratones Endogámicos C57BL , Humanos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Transducción de Señal , Masculino , FN-kappa B/metabolismo , Pulmón/metabolismo , Pulmón/patología , Lipopolisacáridos/farmacología
9.
J Gene Med ; 26(2): e3675, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38388205

RESUMEN

BACKGROUND: Microvesicles (MVs) play a crucial role in bronchopulmonary dysplasia (BPD). There are many MVs in circulating plasma, and they are in direct contact with lung endothelial cells. However, the molecular mechanism and causative effect of circulating MVs on BPD remain unclear. METHODS: Clinical plasma samples were collected, circulating MVs were isolated, and microRNA (miRNA) sequencing was performed. The BPD model was established, and different MVs were administered. Alveoli and pulmonary vessels were examined by hematoxylin-eosin staining, and body weight and length were measured. In vitro, gene expression was disrupted by miRNA mimics, miRNA inhibitors or plasmid transfection. Cell proliferation and protein expression were detected by cell scratch assay, accurate 5-ethynyl-2-deoxyuridine test, western blotting, or immunofluorescence assay. RESULTS: BPD-derived MVs further aggravated pulmonary vascular simplification, while circulating MVs from control mice mitigated pulmonary vascular simplification. Micro-RNA sequencing and independent sample verification revealed that miR139-3p, but not miR6125 or miR193b-3p, was the most critical effector molecule in MVs. Mechanism studies showed that eukaryotic translation initiation factor 4E binding protein 1 was the target gene for miR139-3p. In addition, we found that supplementation of miR139-3p inhibitor partially alleviated pulmonary vascular simplification. CONCLUSIONS: These results indicate that circulating MVs are involved in forming BPD by carrying miR139-3p molecules and support miR139-3p inhibitors as a potential therapeutic strategy for alleviating pulmonary vascular simplification in BPD.


Asunto(s)
Displasia Broncopulmonar , MicroARNs , Animales , Ratones , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Proteínas Portadoras , Células Endoteliales/metabolismo , Pulmón/metabolismo , MicroARNs/metabolismo , Humanos , Recién Nacido
10.
Small ; : e2402483, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822719

RESUMEN

Phosphorus is regarded as a promising material for high-performance lithium-ion batteries (LIBs) due to its high theoretical capacity, appropriate lithiation potential, and low lithium-ion diffusion barrier. Phosphorus/carbon composites (PC) are engineered to serve as high-capacity high-rate anodes; the interaction between phosphorus and carbon, long-term capacity retention, and safety problems are important issues that must be well addressed simultaneously. Herein, an in situ polymerization approach to fabricate a poly-melamine-hybridized (pMA) phosphorus/carbon composite (pMA-PC) is employed. The pMA hybridization enhances the density and electrical conductivity of the PC, improves the structural integrity, and facilitates stable electron transfer within the pMA-PC composite. Moreover, the pMA-PC composite exhibits efficient adsorption of lithium polysulfides, enabling stable transport of Li+ ions. Therefore, the pMA-PC anode demonstrates a high specific charging capacity of 1,381 mAh g-1 at 10 A g-1, and a great capacity retention of 86.7% at 1 A g-1 over 500 cycles. The synergistic effect of phosphorus and nitrogen further confers excellent flame retardant properties to the pMA-PC anode, including self-extinguishing in 2.5 s, and a much lower combustion temperature than PC. The enhanced capacity and safety performance of pMA-PC show potential in future high-capacity and high-rate LIBs.

11.
Small ; : e2310175, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38402424

RESUMEN

Van der Waals semiconductors (vdWS) offer superior mechanical and electrical properties and are promising for flexible microelectronics when combined with polymer substrates. However, the self-passivated vdWS surfaces and their weak adhesion to polymers tend to cause interfacial sliding and wrinkling, and thus, are still challenging the reliability of vdWS-based flexible devices. Here, an effective covalent vdWS-polymer lamination method with high stretch tolerance and excellent electronic performance is reported. Using molybdenum disulfide (MoS2 )and polydimethylsiloxane (PDMS) as a case study, gold-chalcogen bonding and mercapto silane bridges are leveraged. The resulting composite structures exhibit more uniform and stronger interfacial adhesion. This enhanced coupling also enables the observation of a theoretically predicted tension-induced band structure transition in MoS2 . Moreover, no obvious degradation in the devices' structural and electrical properties is identified after numerous mechanical cycle tests. This high-quality lamination enhances the reliability of vdWS-based flexible microelectronics, accelerating their practical applications in biomedical research and consumer electronics.

12.
Planta ; 259(2): 49, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285217

RESUMEN

MAIN CONCLUSION: ZmCBL8-1 enhances salt stress tolerance in maize by improving the antioxidant system to neutralize ROS homeostasis and inducing Na+/H+ antiporter gene expressions of leaves. Calcineurin B-like proteins (CBLs) as plant-specific calcium sensors have been explored for their roles in the regulation of abiotic stress tolerance. Further, the functional variations in ZmCBL8, encoding a component of the salt overly sensitive pathway, conferred the salt stress tolerance in maize. ZmCBL8-1 is a transcript of ZmCBL8 found in maize, but its function in the salt stress response is still unclear. The present study aimed to characterize the protein ZmCBL8-1 that was determined to be composed of 194 amino acids (aa) with three conserved EF hands responsible for binding Ca2+. However, a 20-aa fragment was found to be missing from its C-terminus relative to another transcript of ZmCBL8. Results indicated that it harbored a dual-lipid modification motif MGCXXS at its N-terminus and was located on the cell membrane. The accumulation of ZmCBL8-1 transcripts was high in the roots but relatively lower in the leaves of maize under normal condition. In contrast, its expression was significantly decreased in the roots, while increased in the leaves under NaCl treatment. The overexpression of ZmCBL8-1 resulted in higher salt stress resistance of transgenic Arabidopsis in a Ca2+-dependent manner relative to that of the wild type (WT). In ZmCBL8-1-overexpressing plants exposed to NaCl, the contents of malondialdehyde and hydrogen peroxide were decreased in comparison with those in the WT, and the expression of key genes involved in the antioxidant defense system and Na+/H+ antiporter were upregulated. These results suggested that ZmCBL8-1 played a positive role in the response of leaves to salt stress by inducing the expression of Na+/H+ antiporter genes and enhancing the antioxidant system to neutralize the accumulation of reactive oxygen species. These observations further indicate that ZmCBL8-1 confers salt stress tolerance, suggesting that transcriptional regulation of the ZmCBL8 gene is important for salt tolerance.


Asunto(s)
Arabidopsis , Estrés Salino , Zea mays , Aminoácidos , Antioxidantes , Antiportadores , Arabidopsis/fisiología , Calcineurina/genética , Cloruro de Sodio/farmacología , Zea mays/genética
13.
J Transl Med ; 22(1): 252, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459493

RESUMEN

BACKGROUND: Albuminuria, the presence of excess of protein in urine, is a well-known risk factor for early kidney damage among diabetic/prediabetic patients. There is a complex interaction between physical activity (PA) and albuminuria. However, the relationship of specific-domain PA and albuminuria remained obscure. METHODS: Albuminuria was defined as urinary albumin/creatinine ratio (ACR) > 30 mg/g. PA was self-reported by participants and classified into transportation-related PA (TPA), occupation-related PA (OPA), and leisure-time PA (LTPA). Weighted logistic regression was conducted to compute the odds ratios (ORs) and 95% confidence intervals (CIs). Restricted cubic spline (RCS) was used to evaluate the dose-response of PA domains with the risk of albuminuria. RESULTS: A total of 6739 diabetic/prediabetic patients (mean age: 56.52 ± 0.29 years) were enrolled in our study, including 3181 (47.20%) females and 3558 (52.80%) males. Of them, 1578 (23.42%) were identified with albuminuria, and 5161(76.58%) were without albuminuria. Diabetic/prediabetic patients who adhered the PA guidelines for total PA had a 22% decreased risk of albuminuria (OR = 0.78, 95%CI 0.64-0.95), and those met the PA guidelines for LTPA had a 28% decreased of albuminuria (OR = 0.72, 95%CI 0.57-0.92). However, OPA and TPA were both not associated with decreased risk of albuminuria. RCS showed linear relationship between the risk of albuminuria with LTPA. CONCLUSIONS: Meeting the PA guideline for LTPA, but not OPA and TPA, was inversely related to the risk of albuminuria among diabetic/prediabetic patients. Additionally, achieving more than 300 min/week of LTPA conferred the positive effects in reducing albuminuria among diabetic/prediabetic patients.


Asunto(s)
Diabetes Mellitus , Estado Prediabético , Masculino , Femenino , Humanos , Persona de Mediana Edad , Estudios Transversales , Albuminuria/complicaciones , Ejercicio Físico/fisiología
14.
Nat Mater ; 22(1): 50-57, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36396963

RESUMEN

Layered α-RuCl3 is a promising material to potentially realize the long-sought Kitaev quantum spin liquid with fractionalized excitations. While evidence of this state has been reported under a modest in-plane magnetic field, such behaviour is largely inconsistent with theoretical expectations of spin liquid phases emerging only in out-of-plane fields. These predicted field-induced states have been largely out of reach due to the strong easy-plane anisotropy of bulk crystals, however. We use a combination of tunnelling spectroscopy, magnetotransport, electron diffraction and ab initio calculations to study the layer-dependent magnons, magnetic anisotropy, structure and exchange coupling in atomically thin samples. Due to picoscale distortions, the sign of the average off-diagonal exchange changes in monolayer α-RuCl3, leading to a reversal of spin anisotropy to easy-axis anisotropy, while the Kitaev interaction is concomitantly enhanced. Our work opens the door to the possible exploration of Kitaev physics in the true two-dimensional limit.


Asunto(s)
Electrones , Campos Magnéticos , Anisotropía
15.
Mol Ecol ; : e17457, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984778

RESUMEN

Suaeda salsa L. is a typical halophyte with high value as a vegetable. Here, we report a 447.98 Mb, chromosomal-level genome of S. salsa, assembled into nine pseudomolecules (contig N50 = 1.36 Mb) and annotated with 27,927 annotated protein-coding genes. Most of the assembled S. salsa genome, 58.03%, consists of transposable elements. Some gene families including HKT1, NHX, SOS and CASP related to salt resistance were significantly amplified. We also observed expansion of genes encoding protein that bind the trace elements Zn, Fe, Cu and Mn, and genes related to flavonoid and α-linolenic acid metabolism. Many expanded genes were significantly up-regulated under salinity, which might have contributed to the acquisition of salt tolerance in S. salsa. Transcriptomic data showed that high salinity markedly up-regulated salt-resistance related genes, compared to low salinity. Abundant metabolic pathways of secondary metabolites including flavonoid, unsaturated fatty acids and selenocompound were enriched, which indicates that the species is a nutrient-rich vegetable. Particularly worth mentioning is that there was no significant difference in the numbers of cis-elements in the promoters of salt-related and randomly selected genes in S. salsa when compared with Arabidopsis thaliana, which may affirm that plant salt tolerance is a quantitative rather than a qualitative trait in terms of promoter evolution. Our findings provide deep insight into the adaptation of halophytes to salinity from a genetic evolution perspective.

16.
Plant Cell ; 33(8): 2685-2700, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34003932

RESUMEN

MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), a rice (Oryza sativa) Argonaute (AGO) protein, has been reported to function specifically at premeiotic and meiotic stages of germ cell development and is associated with a novel class of germ cell-specific small noncoding RNAs called phased small RNAs (phasiRNAs). MEL1 accumulation is temporally and spatially regulated and is eliminated after meiosis. However, the metabolism and turnover (i.e. the homeostasis) of MEL1 during germ cell development remains unknown. Here, we show that MEL1 is ubiquitinated and subsequently degraded via the proteasome pathway in vivo during late sporogenesis. Abnormal accumulation of MEL1 after meiosis leads to a semi-sterile phenotype. We identified a monocot-specific E3 ligase, XBOS36, a CULLIN RING-box protein, that is responsible for the degradation of MEL1. Ubiquitination at four K residues at the N terminus of MEL1 by XBOS36 induces its degradation. Importantly, inhibition of MEL1 degradation either by XBOS36 knockdown or by MEL1 overexpression prevents the formation of pollen at the microspore stage. Further mechanistic analysis showed that disrupting MEL1 homeostasis in germ cells leads to off-target cleavage of phasiRNA target genes. Our findings thus provide insight into the communication between a monocot-specific E3 ligase and an AGO protein during plant reproductive development.


Asunto(s)
Oryza/fisiología , Proteínas de Plantas/metabolismo , Esporas/crecimiento & desarrollo , Ubiquitina/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Regulación de la Expresión Génica de las Plantas , Lisina/metabolismo , Meiosis , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Esporas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
17.
Glob Chang Biol ; 30(1): e17016, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37921358

RESUMEN

Carbon allocation has been fundamental for long-lived trees to survive cold stress at their upper elevation range limit. Although carbon allocation between non-structural carbohydrate (NSC) storage and structural growth is well-documented, it still remains unclear how ongoing climate warming influences these processes, particularly whether these two processes will shift in parallel or respond divergently to warming. Using a combination of an in situ downward-transplant warming experiment and an ex situ chamber warming treatment, we investigated how subalpine fir trees at their upper elevation limit coordinated carbon allocation priority among different sinks (e.g., NSC storage and structural growth) at whole-tree level in response to elevated temperature. We found that transplanted individuals from the upper elevation limit to lower elevations generally induced an increase in specific leaf area, but there was no detected evidence of warming effect on leaf-level saturated photosynthetic rates. Additionally, our results challenged the expectation that climate warming will accelerate structural carbon accumulation while maintaining NSC constant. Instead, individuals favored allocating available carbon to NSC storage over structural growth after 1 year of warming, despite the amplification in total biomass encouraged by both in situ and ex situ experimental warming. Unexpectedly, continued warming drove a regime shift in carbon allocation priority, which was manifested in the increase of NSC storage in synchrony to structural growth enhancement. These findings imply that climate warming would release trees at their cold edge from C-conservative allocation strategy of storage over structural growth. Thus, understanding the strategical regulation of the carbon allocation priority and the distinctive function of carbon sink components is of great implication for predicting tree fate in the future climate warming.


Asunto(s)
Abies , Árboles , Humanos , Clima , Fotosíntesis , Carbono
18.
Opt Lett ; 49(2): 254-257, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194541

RESUMEN

We demonstrate the InGaN/GaN-based monolithic micro-pyramid white (MPW) vertical LED (VLED) grown on (-201)-oriented ß-Ga2O3 substrate by selective area growth. The transmission electron microscopy (TEM) reveals an almost defect-free GaN pyramid structure on (10-11) sidewalls, including stacked dual-wavelength multi-quantum wells (MQWs). From the electroluminescence (EL) spectra of the fabricated MPW VLED, a white light emission with a high color rendering index (CRI) of 97.4 is achieved. Furthermore, the simulation shows that the light extraction efficiency (LEE) of the MPW VLED is at least 4 times higher compared with the conventional planar LED. These results show that the MPW VLED grown on ß-Ga2O3 has great potential for highly efficient phosphor-free white light emission.

19.
Clin Sci (Lond) ; 138(13): 797-815, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38840498

RESUMEN

IGFBP7 has been found to play an important role in inflammatory diseases, such as acute lung injury (ALI). However, the role of IGFBP7 in different stages of inflammation remains unclear. Transcriptome sequencing was used to identify the regulatory genes of IGFBP7, and endothelial IGFBP7 expression was knocked down using Aplnr-Dre mice to evaluate the endothelial proliferation capacity. The expression of proliferation-related genes was detected by Western blotting and RT-PCR assays. In the present study, we found that knockdown of IGFBP7 in endothelial cells significantly decreases the expression of endothelial cell proliferation-related genes and cell number in the recovery phase but not in the acute phase of ALI. Mechanistically, using bulk-RNA sequencing and CO-IP, we found that IGFBP7 promotes phosphorylation of FOS and subsequently up-regulates YAP1 molecules, thereby promoting endothelial cell proliferation. This study indicated that IGFBP7 has diverse roles in different stages of ALI, which extends the understanding of IGFBP7 in different stages of ALI and suggests that IGFBP7 as a potential therapeutic target in ALI needs to take into account the period specificity of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Proliferación Celular , Células Endoteliales , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Fosforilación , Transducción de Señal , Proteínas Señalizadoras YAP/metabolismo
20.
Soft Matter ; 20(3): 661-671, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38164039

RESUMEN

Motility near solid surfaces plays a key role in the life cycle of bacteria and is essential for biofilm formation, biofilm dispersal, and virulence. The alignment of the cell body with the surface during surface swimming impacts bacterial surface sensing. Here, we developed a high-throughput method for characterizing the orientation of the cell body relative to the surface using total internal reflection fluorescence (TIRF) microscopy. The angle between the cell body and the surface was determined by maximizing image cross-correlations between the TIRF image of the cell and a reference library. Utilizing this technique, we surprisingly identified six distinct surface swimming states of Pseudomonas aeruginosa according to the body alignment and the flagellar position. Furthermore, we observed that the near-surface swimming speed is greater in the pull state than in the push state, attributed to hydrodynamic effects near the liquid-solid interface. Hydrodynamic force analysis of the swimming states provided rich insights into the mechanics of bacterial surface swimming. Our technique is readily applicable to the study of surface motility across a wide spectrum of bacterial species.


Asunto(s)
Microscopía , Natación , Bacterias , Biopelículas , Pseudomonas aeruginosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA