Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 593(7857): 61-66, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953410

RESUMEN

In only a few decades, lithium-ion batteries have revolutionized technologies, enabling the proliferation of portable devices and electric vehicles1, with substantial benefits for society. However, the rapid growth in technology has highlighted the ethical and environmental challenges of mining lithium, cobalt and other mineral ore resources, and the issues associated with the safe usage and non-hazardous disposal of batteries2. Only a small fraction of lithium-ion batteries are recycled, further exacerbating global material supply of strategic elements3-5. A potential alternative is to use organic-based redox-active materials6-8 to develop rechargeable batteries that originate from ethically sourced, sustainable materials and enable on-demand deconstruction and reconstruction. Making such batteries is challenging because the active materials must be stable during operation but degradable at end of life. Further, the degradation products should be either environmentally benign or recyclable for reconstruction into a new battery. Here we demonstrate a metal-free, polypeptide-based battery, in which viologens and nitroxide radicals are incorporated as redox-active groups along polypeptide backbones to function as anode and cathode materials, respectively. These redox-active polypeptides perform as active materials that are stable during battery operation and subsequently degrade on demand in acidic conditions to generate amino acids, other building blocks and degradation products. Such a polypeptide-based battery is a first step to addressing the need for alternative chemistries for green and sustainable batteries in a future circular economy.


Asunto(s)
Suministros de Energía Eléctrica , Electroquímica , Péptidos/química , Animales , Bovinos , Línea Celular , Supervivencia Celular , Óxidos N-Cíclicos/química , Ratones , Osteoblastos/citología , Oxidación-Reducción , Péptidos/síntesis química , Desarrollo Sostenible , Viológenos/química
2.
Biochem Biophys Res Commun ; 716: 150038, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704891

RESUMEN

Hyperuricemia (HUA) is caused by increased synthesis and/or insufficient excretion of uric acid (UA). Long-lasting HUA may lead to a number of diseases including gout and kidney injury. Harpagoside (Harp) is a bioactive compound with potent anti-inflammatory activity from the roots of Scrophularia ningpoensis. Nevertheless, its potential effect on HUA was not reported. The anti-HUA and nephroprotective effects of Harp on HUA mice were assessed by biochemical and histological analysis. The proteins responsible for UA production and transportation were investigated to figure out its anti-HUA mechanism, while proteins related to NF-κB/NLRP3 pathway were evaluated to reveal its nephroprotective mechanism. The safety was evaluated by testing its effect on body weight and organ coefficients. The results showed that Harp significantly reduced the SUA level and protected the kidney against HUA-induced injury but had no negative effect on safety. Mechanistically, Harp significantly reduced UA production by acting as inhibitors of xanthine oxidase (XOD) and adenosine deaminase (ADA) and decreased UA excretion by acting as activators of ABCG2, OAT1 and inhibitors of GLUT9 and URAT1. Moreover, Harp markedly reduced infiltration of inflammatory cells and down-regulated expressions of TNF-α, NF-κB, NLRP3 and IL-1ß in the kidney. Harp was a promising anti-HUA agent.


Asunto(s)
Glicósidos , Hiperuricemia , Proteína con Dominio Pirina 3 de la Familia NLR , Piranos , Ácido Úrico , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Ácido Úrico/sangre , Masculino , Glicósidos/farmacología , Glicósidos/uso terapéutico , Piranos/farmacología , Piranos/uso terapéutico , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , FN-kappa B/metabolismo , Ratones Endogámicos C57BL
3.
Small ; 20(13): e2307294, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37963858

RESUMEN

The pursuit of stable and efficient electrocatalysts toward seawater oxidation is of great interest, yet it poses considerable challenges. Herein, the utilization of Cr-doped CoFe-layered double hydroxide nanosheet array is reported on nickel-foam (Cr-CoFe-LDH/NF) as an efficient electrocatalyst for oxygen evolution reaction in alkaline seawater. The Cr-CoFe-LDH/NF catalyst can achieve current densities of 500 and 1000 mA cm -2 with remarkably low overpotentials of only 334 and 369 mV, respectively. Furthermore, it maintains at least 100 h stability when operated at 500 mA cm-2.

4.
Small ; : e2400141, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38431944

RESUMEN

Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H2 ). However, the system of seawater-to-H2 faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO4 layer on Ni foam (Ni2 P@NiMoO4 /NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. Such Ni2 P@NiMoO4 /NF requires overpotentials of just 343 and 370 mV to achieve industrial-level current densities of 500 and 1000 mA cm-2 , respectively, surpassing that of Ni2 P/NF (470 and 555 mV). Furthermore, it maintains consistent electrolysis for over 500 h, a significant improvement compared to that of Ni2 P/NF (120 h) and Ni(OH)2 /NF (65 h). Electrochemical in situ Raman spectroscopy, stability testing, and chloride extraction analysis reveal that is situ formed MoO4 2- /PO4 3- from Ni2 P@NiMoO4 during the OER test to the electrode surface, thus effectively repelling Cl- and hindering the formation of harmful ClO- .

5.
Small ; : e2311055, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295001

RESUMEN

Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+ -reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1 , and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.

6.
Molecules ; 29(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257331

RESUMEN

Liver fibrosis is the initial pathological process of many chronic liver diseases. Targeting hepatic stellate cell (HSC) activation is an available strategy for the therapy of liver fibrosis. We aimed to explore the anti-liver fibrosis activity and potential mechanism of phomopsterone B (PB) in human HSCs. The results showed that PB effectively attenuated the proliferation of TGF-ß1-stimulated LX-2 cells in a concentration-dependent manner at doses of 1, 2, and 4 µM. Quantitative real-time PCR and Western blot assays displayed that PB significantly reduced the expression levels of α-SMA and collagen I/III. AO/EB and Hoechst33342 staining and flow cytometry assays exhibited that PB promoted the cells' apoptosis. Meanwhile, PB diminished the number of autophagic vesicles and vacuolated structures, and the LC3B fluorescent spots indicated that PB could effectively inhibit the accretion of autophagosomes in LX-2 cells. Moreover, rapamycin and MHY1485 were utilized to further investigate the effect of mTOR in autophagy and apoptosis. The results demonstrated that PB regulated autophagy and apoptosis via the mTOR-dependent pathway in LX-2 cells. In summary, this is the first evidence that PB effectively alleviates liver fibrosis in TGF-ß1-stimulated LX-2 cells, and PB may be a promising candidate for the prevention of liver fibrosis.


Asunto(s)
Autofagia , Factor de Crecimiento Transformador beta1 , Humanos , Cirrosis Hepática/tratamiento farmacológico , Autofagosomas , Apoptosis
7.
J Headache Pain ; 25(1): 60, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641794

RESUMEN

BACKGROUND: Despite the recognised high prevalence of migraines among bank employees, yet their healthcare utilisation patterns and the economic burden of migraines remain underexplored. AIM: To examine migraine-related healthcare utilisation among bank employees in China, and to estimate the economic burden of migraines. METHODS: A cross-sectional survey was conducted in Guizhou province, China between May and October 2022. The HARDSHIP questionnaire was used to identify migraine-positive individuals and enquire about their healthcare utilisation and productivity losses. A probabilistic decision-analytic model with a micro-costing approach was used to estimate the economic burden from the perspectives of the healthcare system, employers, and society. All costs were expressed in 2022 United States dollars. One-way and probabilistic sensitivity analyses were performed. RESULTS: Nearly half of individuals with migraines reported not seeking medical care. Only 21.8% reported seeking outpatient consultations, 52.5% reported taking medicines, and 27.1% reported using complementary therapies. Chronic migraine patients had significantly higher healthcare utilisation than episodic migraine patients. Among individuals with a monthly migraine frequency of 15 days or more, 63.6% took inappropriate treatments by excessively using acute medications. Migraines in the banking sector in Guizhou cost the healthcare system a median of $7,578.0 thousand (25th to 75th percentile $4,509.2-$16,434.9 thousand) per year, employers $89,750.3 thousand (25th to 75th percentile $53,211.6-$151,162.2 thousand), and society $108,850.3 thousand (25th to 75th percentile $67,370.1-$181,048.6 thousand). The median societal cost per patient-year is $3,078.1. Migraine prevalence and productivity losses were identified as key cost drivers. CONCLUSIONS: The study points to the need to raise awareness of migraines across all stakeholders and to improve the organisation of the migraine care system. A substantial economic burden of migraines on the healthcare system, employers, and society at large was highlighted. These cost estimates offer evidence-based benchmarks for assessing economic savings from improved migraine management, and can also draw the attention of Chinese policymakers to prioritise migraine policies within the banking and other office-based occupations.


Asunto(s)
Estrés Financiero , Trastornos Migrañosos , Humanos , Estudios Transversales , Trastornos Migrañosos/terapia , Trastornos Migrañosos/tratamiento farmacológico , Atención a la Salud , Aceptación de la Atención de Salud , Costo de Enfermedad
8.
Entropy (Basel) ; 26(3)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38539754

RESUMEN

Using electroencephalogram (EEG), we tested the hypothesis that the association of a neutral stimulus with the self would elicit ultra-fast neural responses from early top-down feedback modulation to late feedforward periods for cognitive processing, resulting in self-prioritization in information processing. In two experiments, participants first learned three associations between personal labels (self, friend, stranger) and geometric shapes (Experiment 1) and three colors (Experiment 2), and then they judged whether the shape/color-label pairings matched. Stimuli in Experiment 2 were shown in a social communicative setting with two avatars facing each other, one aligned with the participant's view (first-person perspective) and the other with a third-person perspective. The color was present on the t-shirt of one avatar. This setup allowed for an examination of how social contexts (i.e., perspective taking) affect neural connectivity mediating self-related processing. Functional connectivity analyses in the alpha band (8-12 Hz) revealed that self-other discrimination was mediated by two distinct phases of neural couplings between frontal and occipital regions, involving an early phase of top-down feedback modulation from frontal to occipital areas followed by a later phase of feedforward signaling from occipital to frontal regions. Moreover, while social communicative settings influenced the later feedforward connectivity phase, they did not alter the early feedback coupling. The results indicate that regardless of stimulus type and social context, the early phase of neural connectivity represents an enhanced state of awareness towards self-related stimuli, whereas the later phase of neural connectivity may be associated with cognitive processing of socially meaningful stimuli.

9.
Angew Chem Int Ed Engl ; 63(1): e202316522, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37994225

RESUMEN

Seawater electrolysis is an attractive way of making H2 in coastal areas, and NiFe-based materials are among the top options for alkaline seawater oxidation (ASO). However, ample Cl- in seawater can severely corrode catalytic sites and lead to limited lifespans. Herein, we report that in situ carbon oxyanion self-transformation (COST) from oxalate to carbonate on a monolithic NiFe oxalate micropillar electrode allows safeguard of high-valence metal reaction sites in ASO. In situ/ex situ studies show that spontaneous, timely, and appropriate COST safeguards active sites against Cl- attack during ASO even at an ampere-level current density (j). Our NiFe catalyst shows efficient and stable ASO performance, which requires an overpotential as low as 349 mV to attain a j of 1 A cm-2 . Moreover, the NiFe catalyst with protective surface CO3 2- exhibits a slight activity degradation after 600 h of electrolysis under 1 A cm-2 in alkaline seawater. This work reports effective catalyst surface design concepts at the level of oxyanion self-transformation, acting as a momentous step toward defending active sites in seawater-to-H2 conversion systems.

10.
Small ; 19(42): e2303424, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37330654

RESUMEN

Ammonia (NH3 ) is an indispensable feedstock for fertilizer production and one of the most ideal green hydrogen rich fuel. Electrochemical nitrate (NO3 - ) reduction reaction (NO3 - RR) is being explored as a promising strategy for green to synthesize industrial-scale NH3 , which has nonetheless involved complex multi-reaction process. This work presents a Pd-doped Co3 O4 nanoarray on titanium mesh (Pd-Co3 O4 /TM) electrode for highly efficient and selective electrocatalytic NO3 - RR to NH3 at low onset potential. The well-designed Pd-Co3 O4 /TM delivers a large NH3 yield of 745.6 µmol h-1 cm-2 and an extremely high Faradaic efficiency (FE) of 98.7% at -0.3 V with strong stability. These calculations further indicate that the doping Co3 O4 with Pd improves the adsorption characteristic of Pd-Co3 O4 and optimizes the free energies for intermediates, thereby facilitating the kinetics of the reaction. Furthermore, assembling this catalyst in a Zn-NO3 - battery realizes a power density of 3.9 mW cm-2 and an excellent FE of 98.8% for NH3 .

11.
Small ; 19(24): e2300291, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919558

RESUMEN

Synthesis of green ammonia (NH3 ) via electrolysis of nitric oxide (NO) is extraordinarily sustainable, but multielectron/proton-involved hydrogenation steps as well as low concentrations of NO can lead to poor activities and selectivities of electrocatalysts. Herein, it is reported that oxygen-defective TiO2 nanoarray supported on Ti plate (TiO2- x /TP) behaves as an efficient catalyst for NO reduction to NH3 . In 0.2 m phosphate-buffered electrolyte, such TiO2- x /TP shows competitive electrocatalytic NH3 synthesis activity with a maximum NH3 yield of 1233.2 µg h-1  cm-2 and Faradaic efficiency of 92.5%. Density functional theory calculations further thermodynamically faster NO deoxygenation and protonation processes on TiO2- x (101) compared to perfect TiO2 (101). And the low energy barrier of 0.7 eV on TiO2- x (101) for the potential-determining step further highlights the greatly improved intrinsic activity. In addition, a Zn-NO battery is fabricated with TiO2- x /TP and Zn plate to obtain an NH3 yield of 241.7 µg h-1  cm-2 while providing a peak power density of 0.84 mW cm-2 .

12.
Inorg Chem ; 62(30): 11746-11750, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37449955

RESUMEN

Constructing efficient and low-cost oxygen evolution reaction (OER) catalysts operating in seawater is essential for green hydrogen production but remains a great challenge. In this study, we report an iron doped cobalt carbonate hydroxide nanowire array on nickel foam (Fe-CoCH/NF) as a high-efficiency OER electrocatalyst. In alkaline seawater, such Fe-CoCH/NF demands an overpotential of 387 mV to drive 500 mA cm-2, superior to that of CoCH/NF (597 mV). Moreover, it achieves excellent electrochemical and structural stability in alkaline seawater.

13.
Inorg Chem ; 62(32): 12644-12649, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37534956

RESUMEN

Electrochemical nitrite (NO2-) reduction is recognized as a promising strategy for synthesizing valuable ammonia (NH3) and degrading NO2- pollutants in wastewater. The six-electron process for the NO2- reduction reaction is complex and necessitates a highly selective and stable electrocatalyst for efficient conversion of NO2- to NH3. Herein, a FeP nanoparticle-decorated TiO2 nanoribbon array on a titanium plate (FeP@TiO2/TP) is proposed as an efficient catalyst for NH3 production under ambient conditions. In 0.1 M NaOH with 0.1 M NO2-, such a FeP@TiO2/TP affords a large NH3 yield of 346.6 µmol h-1 cm-2 and a high Faradaic efficiency of 97.1%. Additionally, it demonstrates excellent stability and durability during long-term cycling tests and electrolysis experiments.

14.
Inorg Chem ; 62(1): 25-29, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36537850

RESUMEN

Electrochemical nitrate (NO3-) reduction is a potential approach to produce high-value ammonia (NH3) while removing NO3- pollution, but it requires electrocatalysts with high efficiency and selectivity. Herein, we report the development of Fe3O4 nanoparticles decorated TiO2 nanoribbon array on titanium plate (Fe3O4@TiO2/TP) as an efficient electrocatalyst for NO3--to-NH3 conversion. When operated in 0.1 M phosphate-buffered saline and 0.1 M NO3-, such Fe3O4@TiO2/TP achieves a prominent NH3 yield of 12394.3 µg h-1 cm-2 and a high Faradaic efficiency of 88.4%. In addition, it exhibits excellent stability during long-time electrolysis.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Nitratos , Amoníaco
15.
Inorg Chem ; 62(20): 7976-7981, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37144756

RESUMEN

Seawater electrolysis driven by renewable electricity is deemed a promising and sustainable strategy for green hydrogen production, but it is still formidably challenging. Here, we report an iron-doped NiS nanosheet array on Ni foam (Fe-NiS/NF) as a high-performance and stable seawater splitting electrocatalyst. Such Fe-NiS/NF catalyst needs overpotentials of only 420 and 270 mV at 1000 mA cm-2 for the oxygen evolution reaction and hydrogen evolution reaction in alkaline seawater, respectively. Furthermore, its two-electrode electrolyzer needs a cell voltage of 1.88 V for 1000 mA cm-2 with 50 h of long-term electrochemical durability in alkaline seawater. Additionally, in situ electrochemical Raman and infrared spectroscopy were employed to detect the reconstitution process of NiOOH and the generation of oxygen intermediates under reaction conditions.

16.
Inorg Chem ; 62(38): 15352-15357, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37695036

RESUMEN

Electrocatalytic nitrite (NO2-) reduction offers the potential to synthesize high-value ammonia (NH3) while simultaneously removing NO2- pollution from aqueous solutions, but it requires high-efficiency catalysts to drive the complex six-electron reaction. Herein, cobalt-nanoparticle-decorated 3D porous nitrogen-doped carbon network (Co@NC) is proven as a high-efficiency catalyst for the selective electroreduction of NO2- to NH3. Such Co@NC attains a large NH3 yield of 922.7 µmol h-1 cm-2 and a high Faradaic efficiency of 95.4% under alkaline conditions. Furthermore, it shows remarkable electrochemical stability during cyclic electrolysis.

17.
Conscious Cogn ; 108: 103475, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36709725

RESUMEN

Personally relevant stimuli exert a powerful influence on social cognition. What is not yet fully understood, however, is how early in the processing stream self-relevance influences decisional operations. Here we used a shape-label matching task in conjunction with electroencephalography and computational modeling to explore this issue. A theoretically important pattern of results was observed. First, a standard self-prioritization effect emerged indicating that responses to self-related items were faster and more accurate than responses to other-related stimuli. Second, a hierarchical drift diffusion model analysis revealed that this effect was underpinned by the enhanced uptake of evidence from self-related stimuli. Third, self-other discrimination during matching trials was observed at both early posterior N1 and late centro-parietal P3 components. Fourth, whereas the N1 was associated with the rate of information accumulation during decisional processing, P3 activity was linked with the evidential requirements of response selection. These findings elucidate the electrophysiological correlates of self-prioritization.


Asunto(s)
Electroencefalografía , Cognición Social , Humanos
18.
Chem Biodivers ; 20(4): e202300109, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36786210

RESUMEN

Three new selaginellin derivatives, selaginpulvilins V-X (1-3), together with seven known analogs (4-10) were isolated from whole plants of Selaginella pulvinata. Their structures were determined by extensive spectroscopic methods including 1D and 2D NMR, HR-ESI-MS and chemical derivatization method. Compound 1 represents a rare example of naturally occurring selaginellin with an alkynylphenol-trimmed skeleton. Biological evaluation showed that compounds 2, 6 and 8 displayed moderate inhibition against α-glucosidase with IC50 values of 3.71, 2.04 and 4.00 µM, respectively.


Asunto(s)
Selaginellaceae , Estructura Molecular , Selaginellaceae/química , alfa-Glucosidasas , Espectroscopía de Resonancia Magnética
19.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570688

RESUMEN

Seawater electrolysis has great potential to generate clean hydrogen energy, but it is a formidable challenge. In this study, we report CoFe-LDH nanosheet uniformly decorated on a CuO nanowire array on Cu foam (CuO@CoFe-LDH/CF) for seawater oxidation. Such CuO@CoFe-LDH/CF exhibits high oxygen evolution reaction electrocatalytic activity, demanding only an overpotential of 336 mV to generate a current density of 100 mA cm-2 in alkaline seawater. Moreover, it can operate continuously for at least 50 h without obvious activity attenuation.

20.
Molecules ; 27(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684459

RESUMEN

Polygonum capitatum as an ethnic medicine has been used to treat urinary tract infections, pyelonephritis and urinary calculi. In our previous study, P. capitatum was found to have anti-hyperuricemia effects. Nevertheless, the active constituents of P. capitatum for treating hyperuricemia were still unclear. In this study, an ultra-high-performance liquid chromatography coupled to quadrupole/orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was used to comprehensively detect the chemical ingredients of P. capitatum and its absorbed constituents in the plasma of hyperuricemia rats for the first time. Xcalibur 3.0 and Compound Discoverer 2.0 software coupled to mzCloud and ChemSpider databases were utilized for qualitative analysis. A total of 114 chemical components including phenolics, flavonoids, tannins, phenylpropanoids, amino acids, amides and others were identified or tentatively characterized based on the exact mass, retention time and structural information. Compared to the previous P. capitatum study, an additional 66 different components were detected. Moreover, 68 related xenobiotics including 16 prototype components and 52 metabolites were found in the plasma of hyperuricemia rats. The metabolic pathways included ring fission, hydrolysis, decarboxylation, dehydroxylation, methylation, glucuronidation and sulfation. This work may provide important information for further investigation on the active constituents of P. capitatum and their action mechanisms for anti-hyperuricemia effects.


Asunto(s)
Medicamentos Herbarios Chinos , Hiperuricemia , Polygonum , Animales , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Flavonoides/análisis , Hiperuricemia/tratamiento farmacológico , Polygonum/química , Ratas , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA