Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(24)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38133055

RESUMEN

The flexible electronics have application prospects in many fields, including as wearable devices and in structural detection. Spintronics possess the merits of a fast response and high integration density, opening up possibilities for various applications. However, the integration of miniaturization on flexible substrates is impeded inevitably due to the high Joule heat from high current density (1012 A/m2). In this study, a prototype flexible spintronic with device antiferromagnetic/ferromagnetic heterojunctions is proposed. The interlayer coupling strength can be obviously altered by sunlight soaking via direct photo-induced electron doping. With the assistance of a small magnetic field (±125 Oe), the almost 180° flip of magnetization is realized. Furthermore, the magnetoresistance changes (15~29%) of flexible spintronics on fingers receiving light illumination are achieved successfully, exhibiting the wearable application potential. Our findings develop flexible spintronic sensors, expanding the vision for the novel generation of photovoltaic/spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA