Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Cell ; 167(4): 1067-1078.e16, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773482

RESUMEN

FOXP3+ regulatory T cells (Tregs) maintain tolerance against self-antigens and innocuous environmental antigens. However, it is still unknown whether Treg-mediated tolerance is antigen specific and how Treg specificity contributes to the selective loss of tolerance, as observed in human immunopathologies such as allergies. Here, we used antigen-reactive T cell enrichment to identify antigen-specific human Tregs. We demonstrate dominant Treg-mediated tolerance against particulate aeroallergens, such as pollen, house dust mites, and fungal spores. Surprisingly, we found no evidence of functional impairment of Treg responses in allergic donors. Rather, major allergenic proteins, known to rapidly dissociate from inhaled allergenic particles, have a generally reduced capability to generate Treg responses. Most strikingly, in individual allergic donors, Th2 cells and Tregs always target disparate proteins. Thus, our data highlight the importance of Treg antigen-specificity for tolerance in humans and identify antigen-specific escape from Treg control as an important mechanism enabling antigen-specific loss of tolerance in human allergy.


Asunto(s)
Hipersensibilidad/inmunología , Inmunidad Mucosa , Autotolerancia , Linfocitos T Reguladores/inmunología , Alérgenos/inmunología , Autoantígenos/inmunología , Humanos , Memoria Inmunológica
3.
Proc Natl Acad Sci U S A ; 121(22): e2310864121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781213

RESUMEN

IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.


Asunto(s)
Inmunidad Innata , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-22 , Interleucina-33 , Interleucinas , Streptococcus pneumoniae , Animales , Interleucina-33/inmunología , Interleucina-33/genética , Interleucina-33/metabolismo , Interleucinas/metabolismo , Interleucinas/inmunología , Interleucinas/genética , Ratones , Streptococcus pneumoniae/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Humanos , Ratones Noqueados , Microbiota/inmunología , Ratones Endogámicos C57BL , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/microbiología , Microbioma Gastrointestinal/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Polimorfismo de Nucleótido Simple
4.
Mol Psychiatry ; 27(11): 4590-4598, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35864319

RESUMEN

Post-traumatic stress disorder (PTSD) represents a global public health concern, affecting about 1 in 20 individuals. The symptoms of PTSD include intrusiveness (involuntary nightmares or flashbacks), avoidance of traumatic memories, negative alterations in cognition and mood (such as negative beliefs about oneself or social detachment), increased arousal and reactivity with irritable reckless behavior, concentration problems, and sleep disturbances. PTSD is also highly comorbid with anxiety, depression, and substance abuse. To advance the field from subjective, self-reported psychological measurements to objective molecular biomarkers while considering environmental influences, we examined a unique cohort of Israeli veterans who participated in the 1982 Lebanon war. Non-invasive oral 16S RNA sequencing was correlated with psychological phenotyping. Thus, a microbiota signature (i.e., decreased levels of the bacteria sp_HMT_914, 332 and 871 and Noxia) was correlated with PTSD severity, as exemplified by intrusiveness, arousal, and reactivity, as well as additional psychopathological symptoms, including anxiety, hostility, memory difficulties, and idiopathic pain. In contrast, education duration correlated with significantly increased levels of sp_HMT_871 and decreased levels of Bacteroidetes and Firmicutes, and presented an inverted correlation with adverse psychopathological measures. Air pollution was positively correlated with PTSD symptoms, psychopathological symptoms, and microbiota composition. Arousal and reactivity symptoms were correlated with reductions in transaldolase, an enzyme controlling a major cellular energy pathway, that potentially accelerates aging. In conclusion, the newly discovered bacterial signature, whether an outcome or a consequence of PTSD, could allow for objective soldier deployment and stratification according to decreases in sp_HMT_914, 332, 871, and Noxia levels, coupled with increases in Bacteroidetes levels. These findings also raise the possibility of microbiota pathway-related non-intrusive treatments for PTSD.


Asunto(s)
Personal Militar , Trastornos por Estrés Postraumático , Veteranos , Humanos , Trastornos por Estrés Postraumático/psicología , Veteranos/psicología , Ansiedad , Comorbilidad
5.
Eur Heart J ; 43(6): 518-533, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34597388

RESUMEN

AIMS: Atherosclerotic cardiovascular disease (ACVD) is a major cause of mortality and morbidity worldwide, and increased low-density lipoproteins (LDLs) play a critical role in development and progression of atherosclerosis. Here, we examined for the first time gut immunomodulatory effects of the microbiota-derived metabolite propionic acid (PA) on intestinal cholesterol metabolism. METHODS AND RESULTS: Using both human and animal model studies, we demonstrate that treatment with PA reduces blood total and LDL cholesterol levels. In apolipoprotein E-/- (Apoe-/-) mice fed a high-fat diet (HFD), PA reduced intestinal cholesterol absorption and aortic atherosclerotic lesion area. Further, PA increased regulatory T-cell numbers and interleukin (IL)-10 levels in the intestinal microenvironment, which in turn suppressed the expression of Niemann-Pick C1-like 1 (Npc1l1), a major intestinal cholesterol transporter. Blockade of IL-10 receptor signalling attenuated the PA-related reduction in total and LDL cholesterol and augmented atherosclerotic lesion severity in the HFD-fed Apoe-/- mice. To translate these preclinical findings to humans, we conducted a randomized, double-blinded, placebo-controlled human study (clinical trial no. NCT03590496). Oral supplementation with 500 mg of PA twice daily over the course of 8 weeks significantly reduced LDL [-15.9 mg/dL (-8.1%) vs. -1.6 mg/dL (-0.5%), P = 0.016], total [-19.6 mg/dL (-7.3%) vs. -5.3 mg/dL (-1.7%), P = 0.014] and non-high-density lipoprotein cholesterol levels [PA vs. placebo: -18.9 mg/dL (-9.1%) vs. -0.6 mg/dL (-0.5%), P = 0.002] in subjects with elevated baseline LDL cholesterol levels. CONCLUSION: Our findings reveal a novel immune-mediated pathway linking the gut microbiota-derived metabolite PA with intestinal Npc1l1 expression and cholesterol homeostasis. The results highlight the gut immune system as a potential therapeutic target to control dyslipidaemia that may introduce a new avenue for prevention of ACVDs.


Asunto(s)
Aterosclerosis , Propionatos , Animales , Apolipoproteínas E/metabolismo , Aterosclerosis/etiología , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Humanos , Absorción Intestinal , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Propionatos/farmacología , Propionatos/uso terapéutico
6.
J Neuroinflammation ; 19(1): 274, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36403002

RESUMEN

BACKGROUND: Cerebral infection with the protozoan Toxoplasma gondii (T. gondii) is responsible for inflammation of the central nervous system (CNS) contributing to subtle neuronal alterations. Albeit essential for brain parasite control, continuous microglia activation and recruitment of peripheral immune cells entail distinct neuronal impairment upon infection-induced neuroinflammation. PACAP is an endogenous neuropeptide known to inhibit inflammation and promote neuronal survival. Since PACAP is actively transported into the CNS, we aimed to assess the impact of PACAP on the T. gondii-induced neuroinflammation and subsequent effects on neuronal homeostasis. METHODS: Exogenous PACAP was administered intraperitoneally in the chronic stage of T. gondii infection, and brains were isolated for histopathological analysis and determination of pathogen levels. Immune cells from the brain, blood, and spleen were analyzed by flow cytometry, and the further production of inflammatory mediators was investigated by intracellular protein staining as well as expression levels by RT-qPCR. Neuronal and synaptic alterations were assessed on the transcriptional and protein level, focusing on neurotrophins, neurotrophin-receptors and signature synaptic markers. RESULTS: Here, we reveal that PACAP administration reduced the inflammatory foci and the number of apoptotic cells in the brain parenchyma and restrained the activation of microglia and recruitment of monocytes. The neuropeptide reduced the expression of inflammatory mediators such as IFN-γ, IL-6, iNOS, and IL-1ß. Moreover, PACAP diminished IFN-γ production by recruited CD4+ T cells in the CNS. Importantly, PACAP promoted neuronal health via increased expression of the neurotrophin BDNF and reduction of p75NTR, a receptor related to neuronal cell death. In addition, PACAP administration was associated with increased expression of transporters involved in glutamatergic and GABAergic signaling that are particularly affected during cerebral toxoplasmosis. CONCLUSIONS: Together, our findings unravel the beneficial effects of exogenous PACAP treatment upon infection-induced neuroinflammation, highlighting the potential implication of neuropeptides to promote neuronal survival and minimize synaptic prejudice.


Asunto(s)
Toxoplasma , Toxoplasmosis , Humanos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/uso terapéutico , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Enfermedades Neuroinflamatorias , Toxoplasmosis/complicaciones , Toxoplasmosis/tratamiento farmacológico , Factores de Crecimiento Nervioso , Inflamación/tratamiento farmacológico , Mediadores de Inflamación
7.
Curr Top Microbiol Immunol ; 431: 233-263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33620654

RESUMEN

Human infections with the food-borne pathogen Campylobacter jejuni are progressively increasing worldwide and constitute a significant socioeconomic burden to mankind. Intestinal campylobacteriosis in humans is characterized by bloody diarrhea, fever, abdominal pain, and severe malaise. Some individuals develop chronic post-infectious sequelae including neurological and autoimmune diseases such as reactive arthritis and Guillain-Barré syndrome. Studies unraveling the molecular mechanisms underlying campylobacteriosis and post-infectious sequelae have been hampered by the scarcity of appropriate experimental in vivo models. Particularly, conventional laboratory mice are protected from C. jejuni infection due to the physiological colonization resistance exerted by the murine gut microbiota composition. Additionally, as compared to humans, mice are up to 10,000 times more resistant to C. jejuni lipooligosaccharide (LOS) constituting a major pathogenicity factor responsible for the immunopathological host responses during campylobacteriosis. In this chapter, we summarize the recent progress that has been made in overcoming these fundamental obstacles in Campylobacter research in mice. Modification of the murine host-specific gut microbiota composition and sensitization of the mice to C. jejuni LOS by deletion of genes encoding interleukin-10 or a single IL-1 receptor-related molecule as well as by dietary zinc depletion have yielded reliable murine infection models resembling key features of human campylobacteriosis. These substantial improvements pave the way for a better understanding of the molecular mechanisms underlying pathogen-host interactions. The ongoing validation and standardization of these novel murine infection models will provide the basis for the development of innovative treatment and prevention strategies to combat human campylobacteriosis and collateral damages of C. jejuni infections.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Animales , Modelos Animales de Enfermedad , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL
8.
Curr Top Microbiol Immunol ; 431: 1-23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33620646

RESUMEN

Zoonotic Campylobacter species-mainly C. jejuni and C. coli-are major causes of food-borne bacterial infectious gastroenteritis worldwide. Symptoms of intestinal campylobacteriosis include abdominal pain, diarrhea and fever. The clinical course of enteritis is generally self-limiting, but some infected individuals develop severe post-infectious sequelae including autoimmune disorders affecting the nervous system, the joints and the intestinal tract. Moreover, in immunocompromised individuals, systemic spread of the pathogens may trigger diseases of the circulatory system and septicemia. The socioeconomic costs associated with Campylobacter infections have been calculated to several billion dollars annually. Poultry meat products represent major sources of human infections. Thus, a "One World-One Health" approach with collective efforts of public health authorities, veterinarians, clinicians, researchers and politicians is required to reduce the burden of campylobacteriosis. Innovative intervention regimes for the prevention of Campylobacter contaminations along the food chain include improvements of information distribution to strengthen hygiene measures for agricultural remediation. Given that elimination of Campylobacter from the food production chains is not feasible, novel intervention strategies fortify both the reduction of pathogen contamination in food production and the treatment of the associated diseases in humans. This review summarizes some current trends in the combat of Campylobacter infections including the combination of public health and veterinary preventive approaches with consumer education. The "One World-One Health" perspective is completed by clinical aspects and molecular concepts of human campylobacteriosis offering innovative treatment options supported by novel murine infection models that are based on the essential role of innate immune activation by bacterial endotoxins.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Enfermedades Transmisibles , Gastroenteritis , Salud Única , Animales , Infecciones por Campylobacter/epidemiología , Infecciones por Campylobacter/prevención & control , Humanos , Ratones
9.
Brain Behav Immun ; 99: 203-217, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34673174

RESUMEN

Antibiotics are widely applied for the treatment of bacterial infections, but their long-term use may lead to gut flora dysbiosis and detrimental effects on brain physiology, behavior as well as cognitive performance. Still, a striking lack of knowledge exists concerning electrophysiological correlates of antibiotic-induced changes in gut microbiota and behavior. Here, we investigated changes in the synaptic transmission and plasticity together with behaviorally-relevant network activities from the hippocampus of antibiotic-treated mice. Prolonged antibiotic treatment led to a reduction of myeloid cell pools in bone marrow, circulation and those surveilling the brain. Circulating Ly6Chi inflammatory monocytes adopted a proinflammatory phenotype with increased expression of CD40 and MHC II. In the central nervous system, microglia displayed a subtle activated phenotype with elevated CD40 and MHC II expression, increased IL-6 and TNF production as well as with an increased number of Iba1 + cells in the hippocampal CA3 and CA1 subregions. Concomitantly, we detected a substantial reduction in the synaptic transmission in the hippocampal CA1 after antibiotic treatment. In line, carbachol-induced cholinergic gamma oscillation were reduced upon antibiotic treatment while the incidence of hippocampal sharp waves was elevated. These alterations were associated with the global changes in the expression of neurotrophin nerve growth factor and inducible nitric oxide synthase, both of which have been shown to influence cholinergic system in the hippocampus. Overall, our study demonstrates that antibiotic-induced dysbiosis of the gut microbiome and subsequent alteration of the immune cell function are associated with reduced synaptic transmission and gamma oscillations in the hippocampus, a brain region that is critically involved in mediation of innate and cognitive behavior.


Asunto(s)
Disbiosis , Microglía , Animales , Antibacterianos/farmacología , Colinérgicos/metabolismo , Colinérgicos/farmacología , Disbiosis/inducido químicamente , Disbiosis/metabolismo , Hipocampo/metabolismo , Ratones , Microglía/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(50): 25311-25321, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31740610

RESUMEN

The microbiota is now recognized as a key influence on the host immune response in the central nervous system (CNS). As such, there has been some progress toward therapies that modulate the microbiota with the aim of limiting immune-mediated demyelination, as occurs in multiple sclerosis. However, remyelination-the regeneration of myelin sheaths-also depends upon an immune response, and the effects that such interventions might have on remyelination have not yet been explored. Here, we show that the inflammatory response during CNS remyelination in mice is modulated by antibiotic or probiotic treatment, as well as in germ-free mice. We also explore the effect of these changes on oligodendrocyte progenitor cell differentiation, which is inhibited by antibiotics but unaffected by our other interventions. These results reveal that high combined doses of oral antibiotics impair oligodendrocyte progenitor cell responses during remyelination and further our understanding of how mammalian regeneration relates to the microbiota.


Asunto(s)
Sistema Nervioso Central/fisiopatología , Microbioma Gastrointestinal , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/microbiología , Animales , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Diferenciación Celular/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/inmunología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/fisiopatología , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Probióticos/administración & dosificación , Remielinización/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos
11.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206478

RESUMEN

Prevalences of Campylobacter (C.) jejuni infections are progressively rising globally. Given that probiotic feed additives, such as the commercial product Aviguard®, have been shown to be effective in reducing enteropathogens, such as Salmonella, in vertebrates, including livestock, we assessed potential anti-pathogenic and immune-modulatory properties of Aviguard® during acute C. jejuni-induced murine enterocolitis. Therefore, microbiota-depleted IL-10-/- mice were infected with C. jejuni strain 81-176 by gavage and orally treated with Aviguard® or placebo from day 2 to 4 post-infection. The applied probiotic bacteria could be rescued from the intestinal tract of treated mice, but with lower obligate anaerobic bacterial counts in C. jejuni-infected as compared to non-infected mice. Whereas comparable gastrointestinal pathogen loads could be detected in both groups until day 6 post-infection, Aviguard® treatment resulted in improved clinical outcome and attenuated apoptotic cell responses in infected large intestines during acute campylobacteriosis. Furthermore, less distinct pro-inflammatory immune responses could be observed not only in the intestinal tract, but also in extra-intestinal compartments on day 6 post-infection. In conclusion, we show here for the first time that Aviguard® exerts potent disease-alleviating effects in acute C. jejuni-induced murine enterocolitis and might be a promising probiotic treatment option for severe campylobacteriosis in humans.


Asunto(s)
Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/terapia , Campylobacter jejuni/fisiología , Enterocolitis/microbiología , Enterocolitis/terapia , Probióticos/uso terapéutico , Animales , Biomarcadores , Infecciones por Campylobacter/diagnóstico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Enterocolitis/diagnóstico , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad , Mediadores de Inflamación/metabolismo , Interleucina-10/deficiencia , Yeyuno/microbiología , Yeyuno/patología , Ratones , Ratones Noqueados
12.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445577

RESUMEN

Infections by the zoonotic foodborne bacterium Campylobacter jejuni (C. jejuni) are among the most frequent causes of bacterial gastroenteritis worldwide. The aim was to evaluate the relationship between epithelial barrier disruption, mucosal immune activation, and vitamin D (VD) treatment during C. jejuni infection, using intestinal epithelial cells and mouse models focused on the interaction of C. jejuni with the VD signaling pathway and VD treatment to improve C. jejuni-induced barrier dysfunction. Our RNA-Seq data from campylobacteriosis patients demonstrate inhibition of VD receptor (VDR) downstream targets, consistent with suppression of immune function. Barrier-preserving effects of VD addition were identified in C. jejuni-infected epithelial cells and IL-10-/- mice. Furthermore, interference of C. jejuni with the VDR pathway was shown via VDR/retinoid X receptor (RXR) interaction. Paracellular leakiness of infected epithelia correlated with tight junction (TJ) protein redistribution off the TJ domain and apoptosis induction. Supplementation with VD reversed barrier impairment and prevented inhibition of the VDR pathway, as shown by restoration of transepithelial electrical resistance and fluorescein (332 Da) permeability. We conclude that VD treatment restores gut epithelial barrier functionality and decreases bacterial transmigration and might, therefore, be a promising compound for C. jejuni treatment in humans and animals.


Asunto(s)
Infecciones por Campylobacter/complicaciones , Permeabilidad de la Membrana Celular , Células Epiteliales/efectos de los fármacos , Interleucina-10/fisiología , Mucosa Intestinal/efectos de los fármacos , Vitamina D/farmacología , Animales , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/aislamiento & purificación , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Uniones Estrechas/metabolismo , Vitaminas/farmacología
13.
Allergy ; 75(8): 1979-1990, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32064643

RESUMEN

BACKGROUND: The use of antibiotics during pregnancy is associated with increased allergic asthma risk in the offspring, and given that approximately 25% of pregnant women are prescribed antibiotics, it is important to understand the mechanisms contributing to this phenomenon. Currently, there are no studies that directly test this association experimentally. Our objective was to develop a mouse model in which antibiotic treatment during pregnancy results in increased offspring asthma susceptibility. METHODS: Pregnant mice were treated daily from gestation day 8-17 with an oral solution of the antibiotic vancomycin, and three concentrations were tested. At weaning, offspring were subjected to an adjuvant-free experimental asthma protocol using ovalbumin as an allergen. The composition of the gut microbiome was determined in mothers and offspring with samples collected from five different time points; short-chain fatty acids were also analyzed in allergic offspring. RESULTS: We found that maternal antibiotic treatment during pregnancy was associated with increased offspring asthma severity in a dose-dependent manner. Furthermore, maternal vancomycin treatment during pregnancy caused marked changes in the gut microbiome composition in both mothers and pups at several different time points. The increased asthma severity and intestinal microbiome changes in pups were also associated with significantly decreased cecal short-chain fatty acid concentrations. CONCLUSION: Consistent with the "Developmental Origins Hypothesis," our results confirm that exposure to antibiotics during pregnancy shapes the neonatal intestinal environment and increases offspring allergic lung inflammation.


Asunto(s)
Asma , Hipersensibilidad , Efectos Tardíos de la Exposición Prenatal , Animales , Antibacterianos/efectos adversos , Asma/tratamiento farmacológico , Asma/etiología , Femenino , Humanos , Ratones , Ovalbúmina , Embarazo
14.
J Neural Transm (Vienna) ; 127(2): 251-263, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32072336

RESUMEN

Activity-dependent neuroprotective protein (ADNP) and its protein snippet NAP (drug candidate CP201) regulate synapse formation and cognitive as well as behavioral functions, in part, through microtubule interaction. Given potential interactions between the microbiome and brain function, we now investigated the potential effects of the ADNP-deficient genotype, mimicking the ADNP syndrome on microbiota composition in the Adnp+/- mouse model. We have discovered a surprising robust sexually dichotomized Adnp genotype effect and correction by NAP (CP201) as follows. Most of the commensal bacterial microbiota tested were affected by the Adnp genotype and corrected by NAP treatment in a male sex-dependent manner. The following list includes all the bacterial groups tested-labeled in bold are male Adnp-genotype increased and corrected (decreased) by NAP. (1) Eubacteriaceae (EubV3), (2) Enterobacteriaceae (Entero), (3) Enterococcus genus (gEncocc), (4) Lactobacillus group (Lacto), (5) Bifidobacterium genus (BIF), (6) Bacteroides/Prevotella species (Bac), (7) Clostridium coccoides group (Coer), (8) Clostridium leptum group (Cluster IV, sgClep), and (9) Mouse intestinal Bacteroides (MIB). No similarities were found between males and females regarding sex- and genotype-dependent microbiota distributions. Furthermore, a female Adnp+/- genotype associated decrease (contrasting male increase) was observed in the Lactobacillus group (Lacto). Significant correlations were discovered between specific bacterial group loads and open-field behavior as well as social recognition behaviors. In summary, we discovered ADNP deficiency associated changes in commensal gut microbiota compositions, a sex-dependent biomarker for the ADNP syndrome and beyond. Strikingly, we discovered rapidly detected NAP (CP201) treatment-dependent biomarkers within the gut microbiota.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Conducta Animal , Microbioma Gastrointestinal , Naftoquinonas/farmacología , Proteínas del Tejido Nervioso/deficiencia , Animales , Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/fisiopatología , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Genotipo , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Transgénicos , Naftoquinonas/administración & dosificación , Naftoquinonas/farmacocinética , Proteínas del Tejido Nervioso/genética , Conducta Social , Cognición Social , Síndrome
15.
Int J Mol Sci ; 21(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936044

RESUMEN

The epithelial sodium channel (ENaC) can increase the colonic absorptive capacity for salt and water. Campylobacter concisus is a common pathogenic epsilonproteobacterium, causing enteritis and diarrhea. It can induce barrier dysfunction in the intestine, but its influence on intestinal transport function is still unknown. Therefore, our study aimed to characterize C. concisus effects on ENaC using the HT-29/B6-GR/MR (epithelial cell line HT-29/B6 transfected with glucocorticoid and mineralocorticoid receptors) cell model and mouse colon. In Ussing chambers, C. concisus infection inhibited ENaC-dependent Na+ transport as indicated by a reduction in amiloride-sensitive short circuit current (-55%, n = 15, p < 0.001). This occurred via down-regulation of ß- and γ-ENaC mRNA expression and ENaC ubiquitination due to extracellular signal-regulated kinase (ERK)1/2 activation, predicted by Ingenuity Pathway Analysis (IPA). In parallel, C. concisus reduced the expression of the sealing tight junction (TJ) protein claudin-8 and induced claudin-8 redistribution off the TJ domain of the enterocytes, which facilitates the back leakage of Na+ ions into the intestinal lumen. In conclusion, C. concisus caused ENaC dysfunction via interleukin-32-regulated ERK1/2, as well as claudin-8-dependent barrier dysfunction-both of which contribute to Na+ malabsorption and diarrhea.


Asunto(s)
Infecciones por Campylobacter/metabolismo , Campylobacter/fisiología , Claudinas/metabolismo , Canales Epiteliales de Sodio/metabolismo , Sodio/metabolismo , Animales , Infecciones por Campylobacter/microbiología , Colon/metabolismo , Colon/microbiología , Diarrea/metabolismo , Diarrea/microbiología , Células HT29 , Interacciones Huésped-Patógeno , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL
16.
Arterioscler Thromb Vasc Biol ; 38(9): 2225-2235, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29976769

RESUMEN

Objective- Gut microbiota-dependent metabolites, in particular trimethylamine N-oxide (TMAO), have recently been reported to promote atherosclerosis and thrombosis. Here, we examined for the first time the relation of TMAO and the risk of incident cardiovascular events in patients with recent first-ever ischemic stroke in 2 independent prospective cohorts. Moreover, the link between TMAO and proinflammatory monocytes as a potential contributing factor for cardiovascular risk in stroke patients was studied. Approach and Results- In a first study (n=78), higher TMAO plasma levels were linked with an increased risk of incident cardiovascular events including myocardial infarction, recurrent stroke, and cardiovascular death (fourth quartile versus first quartile; hazard ratio, 2.31; 95% CI, 1.25-4.23; P<0.01). In the second independent validation cohort (n=593), high TMAO levels again heralded marked increased risk of adverse cardiovascular events (fourth quartile versus first quartile; hazard ratio, 5.0; 95% CI, 1.7-14.8; P<0.01), and also after adjustments for cardiovascular risk factors including hypertension, diabetes mellitus, LDL (low-density lipoprotein) cholesterol, and estimated glomerular filtration rate (hazard ratio, 3.3; 95% CI, 1.2-10.9; P=0.04). A significant correlation was also found between TMAO levels and percentage of proinflammatory intermediate CD14++CD16+ monocytes ( r=0.70; P<0.01). Moreover, in mice fed a diet enriched with choline to increase TMAO synthesis, levels of proinflammatory murine Ly6Chigh monocytes were higher than in the chow-fed control group (choline: 9.2±0.5×103 per mL versus control: 6.5±0.5×103 per mL; P<0.01). This increase was abolished in mice with depleted gut microbiota (choline+antibiotics: 5.4±0.7×103 per mL; P<0.001 versus choline). Conclusions- The present study demonstrates for the first time a graded relation between TMAO levels and the risk of subsequent cardiovascular events in patients with recent prior ischemic stroke. Our data support the notion that TMAO-related increase of proinflammatory monocytes may add to elevated cardiovascular risk of patients with increased TMAO levels.


Asunto(s)
Isquemia Encefálica/complicaciones , Isquemia Encefálica/metabolismo , Enfermedades Cardiovasculares/etiología , Microbioma Gastrointestinal/fisiología , Metilaminas/sangre , Monocitos/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Animales , Antígenos CD , Antígenos de Diferenciación de Linfocitos T , Antígenos CD4 , Muerte Súbita Cardíaca/etiología , Femenino , Humanos , Inflamación , Masculino , Ratones Endogámicos C57BL , Monocitos/inmunología , Estudios Prospectivos , Recurrencia , Factores de Riesgo
17.
Int J Mol Sci ; 20(19)2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31569415

RESUMEN

Campylobacter jejuni (C. jejuni) is the most common cause of foodborne gastroenteritis worldwide. The bacteria induce diarrhea and inflammation by invading the intestinal epithelium. Curcumin is a natural polyphenol from turmeric rhizome of Curcuma longa, a medical plant, and is commonly used in curry powder. The aim of this study was the investigation of the protective effects of curcumin against immune-induced epithelial barrier dysfunction in C. jejuni infection. The indirect C. jejuni-induced barrier defects and its protection by curcumin were analyzed in co-cultures with HT-29/B6-GR/MR epithelial cells together with differentiated THP-1 immune cells. Electrophysiological measurements revealed a reduction in transepithelial electrical resistance (TER) in infected co-cultures. An increase in fluorescein (332 Da) permeability in co-cultures as well as in the germ-free IL-10-/- mouse model after C. jejuni infection was shown. Curcumin treatment attenuated the C. jejuni-induced increase in fluorescein permeability in both models. Moreover, apoptosis induction, tight junction redistribution, and an increased inflammatory response-represented by TNF-α, IL-1ß, and IL-6 secretion-was observed in co-cultures after infection and reversed by curcumin. In conclusion, curcumin protects against indirect C. jejuni-triggered immune-induced barrier defects and might be a therapeutic and protective agent in patients.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Infecciones por Campylobacter/inmunología , Campylobacter jejuni/inmunología , Curcumina/farmacología , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/inmunología , Animales , Apoptosis , Infecciones por Campylobacter/microbiología , Línea Celular , Técnicas de Cocultivo , Citocinas/biosíntesis , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Ratones , Ratones Noqueados , Membrana Mucosa/microbiología , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/genética , Uniones Estrechas/metabolismo
18.
Crit Care ; 22(1): 282, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30373626

RESUMEN

BACKGROUND: Antibiotic exposure alters the microbiota, which can impact the inflammatory immune responses. Critically ill patients frequently receive antibiotic treatment and are often subjected to mechanical ventilation, which may induce local and systemic inflammatory responses and development of ventilator-induced lung injury (VILI). The aim of this study was to investigate whether disruption of the microbiota by antibiotic therapy prior to mechanical ventilation affects pulmonary inflammatory responses and thereby the development of VILI. METHODS: Mice underwent 6-8 weeks of enteral antibiotic combination treatment until absence of cultivable bacteria in fecal samples was confirmed. Control mice were housed equally throughout this period. VILI was induced 3 days after completing the antibiotic treatment protocol, by high tidal volume (HTV) ventilation (34 ml/kg; positive end-expiratory pressure = 2 cmH2O) for 4 h. Differences in lung function, oxygenation index, pulmonary vascular leakage, macroscopic assessment of lung injury, and leukocyte and lymphocyte differentiation were assessed. Control groups of mice ventilated with low tidal volume and non-ventilated mice were analyzed accordingly. RESULTS: Antibiotic-induced microbiota depletion prior to HTV ventilation led to aggravation of VILI, as shown by increased pulmonary permeability, increased oxygenation index, decreased pulmonary compliance, enhanced macroscopic lung injury, and increased cytokine/chemokine levels in lung homogenates. CONCLUSIONS: Depletion of the microbiota by broad-spectrum antibiotics prior to HTV ventilation renders mice more susceptible to developing VILI, which could be clinically relevant for critically ill patients frequently receiving broad-spectrum antibiotics.


Asunto(s)
Antibacterianos/efectos adversos , Microbiota/efectos de los fármacos , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Animales , Antibacterianos/uso terapéutico , Análisis de los Gases de la Sangre/métodos , Modelos Animales de Enfermedad , Pulmón/fisiopatología , Ratones , Ratones Endogámicos C57BL , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Lesión Pulmonar Inducida por Ventilación Mecánica/complicaciones , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico
19.
J Immunol ; 194(7): 3223-35, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25710908

RESUMEN

Cerebral infection with the parasite Toxoplasma gondii is followed by activation of resident cells and recruitment of immune cells from the periphery to the CNS. In this study, we show that a subset of myeloid cells, namely Ly6C(high)CCR2(+) inflammatory monocytes that infiltrate the brain upon chronic T. gondii infection, plays a decisive role in host defense. Depletion of this monocyte subset resulted in elevated parasite load and decreased survival of infected mice, suggesting their crucial role. Notably, Ly6C(high)CCR2(+) monocytes governed parasite control due to production of proinflammatory mediators, such as IL-1α, IL-1ß, IL-6, inducible NO synthase, TNF, and reactive oxygen intermediate. Interestingly, Ly6C(high)CCR2(+) monocytes were also able to produce the regulatory cytokine IL-10, revealing their dual feature. Moreover, we confirmed by adoptive transfer that the recruited monocytes further develop into two distinct subpopulations contributing to parasite control and profound host defense. The differentiated Ly6C(int)CCR2(+)F4/80(int) subset upregulated MHC I and MHC II molecules, suggesting dendritic cell properties such as interaction with T cells, whereas the Ly6C(neg)F4/80(high) cell subset displayed elevated phagocytic capacity while upregulating triggering receptor expressed on myeloid cells-2. Finally, we have shown that the recruitment of Ly6C(high) monocytes to the CNS is regulated by P-selectin glycoprotein ligand-1. These results indicate the critical importance of recruited Ly6C(high) monocytes upon cerebral toxoplasmosis and reveal the behavior of further differentiated myeloid-derived mononuclear cell subsets in parasite control and immune regulation of the CNS.


Asunto(s)
Antígenos Ly/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Toxoplasmosis Cerebral/inmunología , Traslado Adoptivo , Animales , Quimiotaxis de Leucocito/inmunología , Enfermedad Crónica , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Femenino , Inmunofenotipificación , Glicoproteínas de Membrana/metabolismo , Ratones , Microglía/inmunología , Microglía/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Células Mieloides/patología , Fagocitosis/inmunología , Fenotipo , Receptores CCR2/metabolismo , Toxoplasmosis Cerebral/parasitología , Toxoplasmosis Cerebral/patología
20.
Stroke ; 47(5): 1354-63, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27056982

RESUMEN

BACKGROUND AND PURPOSE: Antibiotics disturbing microbiota are often used in treatment of poststroke infections. A bidirectional brain-gut microbiota axis was recently suggested as a modulator of nervous system diseases. We hypothesized that gut microbiota may be an important player in the course of stroke. METHODS: We investigated the outcome of focal cerebral ischemia in C57BL/6J mice after an 8-week decontamination with quintuple broad-spectrum antibiotic cocktail. These microbiota-depleted animals were subjected to 60 minutes middle cerebral artery occlusion or sham operation. Infarct volume was measured using magnetic resonance imaging, and mice were monitored clinically throughout the whole experiment. At the end point, tissues were preserved for further analysis, comprising histology and immunologic investigations using flow cytometry. RESULTS: We found significantly decreased survival in the middle cerebral artery occlusion microbiota-depleted mice when the antibiotic cocktail was stopped 3 days before surgery (compared with middle cerebral artery occlusion specific pathogen-free and sham-operated microbiota-depleted mice). Moreover, all microbiota-depleted animals in which antibiotic treatment was terminated developed severe acute colitis. This phenotype was rescued by continuous antibiotic treatment or colonization with specific pathogen-free microbiota before surgery. Further, infarct volumes on day one did not differ between any of the experimental groups. CONCLUSIONS: Conventional microbiota ensures intestinal protection in the mouse model of experimental stroke and prevents development of acute and severe colitis in microbiota-depleted mice not given antibiotic protection after cerebral ischemia. Our experiments raise the clinically important question as to whether microbial colonization or specific microbiota are crucial for stroke outcome.


Asunto(s)
Antibacterianos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Accidente Cerebrovascular/microbiología , Animales , Femenino , Infarto de la Arteria Cerebral Media/microbiología , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA