Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cancer Res ; 83(15): 2471-2479, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289018

RESUMEN

The emergence of resistance to targeted therapies restrains their efficacy. The development of rationally guided drug combinations could overcome this currently insurmountable clinical challenge. However, our limited understanding of the trajectories that drive the outgrowth of resistant clones in cancer cell populations precludes design of drug combinations to forestall resistance. Here, we propose an iterative treatment strategy coupled with genomic profiling and genome-wide CRISPR activation screening to systematically extract and define preexisting resistant subpopulations in an EGFR-driven lung cancer cell line. Integrating these modalities identifies several resistance mechanisms, including activation of YAP/TAZ signaling by WWTR1 amplification, and estimates the associated cellular fitness for mathematical population modeling. These observations led to the development of a combination therapy that eradicated resistant clones in large cancer cell line populations by exhausting the spectrum of genomic resistance mechanisms. However, a small fraction of cancer cells was able to enter a reversible nonproliferative state of drug tolerance. This subpopulation exhibited mesenchymal properties, NRF2 target gene expression, and sensitivity to ferroptotic cell death. Exploiting this induced collateral sensitivity by GPX4 inhibition clears drug-tolerant populations and leads to tumor cell eradication. Overall, this experimental in vitro data and theoretical modeling demonstrate why targeted mono- and dual therapies will likely fail in sufficiently large cancer cell populations to limit long-term efficacy. Our approach is not tied to a particular driver mechanism and can be used to systematically assess and ideally exhaust the resistance landscape for different cancer types to rationally design combination therapies. SIGNIFICANCE: Unraveling the trajectories of preexisting resistant and drug-tolerant persister cells facilitates the rational design of multidrug combination or sequential therapies, presenting an approach to explore for treating EGFR-mutant lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Transducción de Señal , Receptores ErbB/metabolismo , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Mutación
2.
Eur J Cancer ; 179: 124-135, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521334

RESUMEN

OBJECTIVES: Resistance to MET inhibition occurs inevitably in MET-dependent non-small cell lung cancer and the underlying mechanisms are insufficiently understood. We describe resistance mechanisms in patients with MET exon 14 skipping mutation (METΔex14), MET amplification, and MET fusion and report treatment outcomes after switching therapy from type I to type II MET inhibitors. MATERIALS AND METHODS: Pre- and post-treatment biopsies were analysed by NGS (next generation sequencing), digital droplet PCR (polymerase chain reaction), and FISH (fluorescense in situ hybridization). A patient-derived xenograft model was generated in one case. RESULTS: Of 26 patients with MET tyrosine kinase inhibitor treatment, eight had paired pre- and post-treatment biopsies (Three with MET amplification, three with METΔex14, two with MET fusions (KIF5B-MET and PRKAR2B-MET).) In six patients, mechanisms of resistance were detected, whereas in two cases, the cause of resistance remained unclear. We found off-target resistance mechanisms in four cases with KRAS mutations and HER2 amplifications appearing. Two patients exhibited second-site MET mutations (p.D1246N and p. Y1248H). Three patients received type I and type II MET tyrosine kinase inhibitors sequentially. In two cases, further progressive disease was seen hereafter. The patient with KIF5B-MET fusion received three different MET inhibitors and showed long-lasting stable disease and a repeated response after switching therapy, respectively. CONCLUSION: Resistance to MET inhibition is heterogeneous with on- and off-target mechanisms occurring regardless of the initial MET aberration. Switching therapy between different types of kinase inhibitors can lead to repeated responses in cases with second-site mutations. Controlled clinical trials in this setting with larger patient numbers are needed, as evidence to date is limited to preclinical data and case series.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Resistencia a Antineoplásicos/genética , Proteínas Proto-Oncogénicas c-met/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación
3.
J Med Chem ; 65(9): 6643-6655, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35486541

RESUMEN

Despite the clinical efficacy of epidermal growth factor receptor (EGFR) inhibitors, a subset of patients with non-small cell lung cancer displays insertion mutations in exon20 in EGFR and Her2 with limited treatment options. Here, we present the development and characterization of the novel covalent inhibitors LDC8201 and LDC0496 based on a 1H-pyrrolo[2,3-b]pyridine scaffold. They exhibited intense inhibitory potency toward EGFR and Her2 exon20 insertion mutations as well as selectivity over wild type EGFR and within the kinome. Complex crystal structures with the inhibitors and biochemical and cellular on-target activity document their favorable binding characteristics. Ultimately, we observed tumor shrinkage in mice engrafted with patient-derived EGFR-H773_V774insNPH mutant cells during treatment with LDC8201. Together, these results highlight the potential of covalent pyrrolopyridines as inhibitors to target exon20 insertion mutations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Mutagénesis Insercional , Mutación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
4.
Oncogene ; 40(1): 1-11, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33060857

RESUMEN

EGFR mutations account for the majority of druggable targets in lung adenocarcinoma. Over the past decades the optimization of EGFR inhibitors revolutionized the treatment options for patients suffering from this disease. The pace of this development was largely dictated by the inevitable emergence of resistance mutations during drug treatment. As a result, a rapid understanding of the structural and molecular biology of the individual mutations is the key for the development of next-generation inhibitors. Currently, the field faces an unprecedented number of combinations of activating mutations with distinct resistance mutations in parallel to the approval of osimertinib as a first-line drug for EGFR-mutant lung cancer. In this review, we present a survey of the diverse landscape of EGFR resistance mechanisms with a focus on new insights into on-target EGFR kinase mutations. We discuss array of mutations, their structural effects on the EGFR kinase domain as well as the most promising strategies to overcome the individual resistance profiles found in lung cancer patients.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Resistencia a Antineoplásicos , Neoplasias Pulmonares/genética , Mutación , Adenocarcinoma del Pulmón/tratamiento farmacológico , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
5.
Nat Commun ; 12(1): 5505, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535668

RESUMEN

Kinase inhibitors suppress the growth of oncogene driven cancer but also enforce the selection of treatment resistant cells that are thought to promote tumor relapse in patients. Here, we report transcriptomic and functional genomics analyses of cells and tumors within their microenvironment across different genotypes that persist during kinase inhibitor treatment. We uncover a conserved, MAPK/IRF1-mediated inflammatory response in tumors that undergo stemness- and senescence-associated reprogramming. In these tumor cells, activation of the innate immunity sensor RIG-I via its agonist IVT4, triggers an interferon and a pro-apoptotic response that synergize with concomitant kinase inhibition. In humanized lung cancer xenografts and a syngeneic Egfr-driven lung cancer model these effects translate into reduction of exhausted CD8+ T cells and robust tumor shrinkage. Overall, the mechanistic understanding of MAPK/IRF1-mediated intratumoral reprogramming may ultimately prolong the efficacy of targeted drugs in genetically defined cancer patients.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Inmunidad Innata , Inflamación/patología , Sistema de Señalización de MAP Quinasas , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptores Inmunológicos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Citocinas/metabolismo , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Evasión Inmune/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Factor 1 Regulador del Interferón/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neoplasias/patología , Oncogenes , Transducción de Señal/efectos de los fármacos
6.
Cancers (Basel) ; 11(5)2019 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31130628

RESUMEN

Testicular germ cell tumors (GCTs) are very common in young men and can be stratified into seminomas and non-seminomas. While seminomas share a similar gene expression and epigenetic profile with primordial germ cells, the stem cell population of the non-seminomas, the embryonal carcinoma (EC), resembles malignant embryonic stem cells. Thus, ECs are able to differentiate into cells of all three germ layers (teratomas) and even extra-embryonic-tissue-like cells (yolk-sac tumor, choriocarcinoma). In the last years, we demonstrated that the cellular microenvironment considerably influences the plasticity of seminomas (TCam-2 cells). Upon a microenvironment-triggered inhibition of the BMP signaling pathway in vivo (murine flank or brain), seminomatous TCam-2 cells reprogram to an EC-like cell fate. We identified SOX2 as a key factor activated upon BMP inhibition mediating the reprogramming process by regulating pluripotency, reprogramming and epigenetic factors. Indeed, CRISPR/Cas9 SOX2-deleted TCam-2 cells were able to maintain a seminoma-cell fate in vivo for about six weeks, but after six weeks in vivo still small sub-populations initiated differentiation. Closer analyses of these differentiated clusters suggested that the pioneer factor FOXA2 might be the driving force behind this induction of differentiation, since many FOXA2 interacting genes and differentiation factors like AFP, EOMES, CDX1, ALB, HAND1, DKK, DLK1, MSX1 and PITX2 were upregulated. In this study, we generated TCam-2 cells double-deficient for SOX2 and FOXA2 using the CRISPR/Cas9 technique and xenografted those cells into the flank of nude mice. Upon loss of SOX2 and FOXA2, TCam-2 maintained a seminoma cell fate for at least twelve weeks, demonstrating that both factors are key players in the reprogramming to an EC-like cell fate. Therefore, our study adds an important piece to the puzzle of GCT development and plasticity, providing interesting insights in what can be expected in a patient, when GCT cells are confronted with different microenvironments.

7.
Chem Sci ; 10(46): 10789-10801, 2019 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-31857889

RESUMEN

Precision medicine has revolutionized the treatment of patients in EGFR driven non-small cell lung cancer (NSCLC). Targeted drugs show high response rates in genetically defined subsets of cancer patients and markedly increase their progression-free survival as compared to conventional chemotherapy. However, recurrent acquired drug resistance limits the success of targeted drugs in long-term treatment and requires the constant development of novel efficient inhibitors of drug resistant cancer subtypes. Herein, we present covalent inhibitors of the drug resistant gatekeeper mutant EGFR-L858R/T790M based on the pyrrolopyrimidine scaffold. Biochemical and cellular characterization, as well as kinase selectivity profiling and western blot analysis, substantiate our approach. Moreover, the developed compounds possess high activity against multi drug resistant EGFR-L858R/T790M/C797S in biochemical assays due to their highly reversible binding character, that was revealed by characterization of the binding kinetics. In addition, we present the first X-ray crystal structures of covalent inhibitors in complex with C797S-mutated EGFR which provide detailed insight into their binding mode.

8.
Nat Commun ; 9(1): 4655, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405134

RESUMEN

The emergence of acquired resistance against targeted drugs remains a major clinical challenge in lung adenocarcinoma patients. In a subgroup of these patients we identified an association between selection of EGFRT790M-negative but EGFRG724S-positive subclones and osimertinib resistance. We demonstrate that EGFRG724S limits the activity of third-generation EGFR inhibitors both in vitro and in vivo. Structural analyses and computational modeling indicate that EGFRG724S mutations may induce a conformation of the glycine-rich loop, which is incompatible with the binding of third-generation TKIs. Systematic inhibitor screening and in-depth kinetic profiling validate these findings and show that second-generation EGFR inhibitors retain kinase affinity and overcome EGFRG724S-mediated resistance. In the case of afatinib this profile translates into a robust reduction of colony formation and tumor growth of EGFRG724S-driven cells. Our data provide a mechanistic basis for the osimertinib-induced selection of EGFRG724S-mutant clones and a rationale to treat these patients with clinically approved second-generation EGFR inhibitors.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Acrilamidas , Compuestos de Anilina , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Receptores ErbB/química , Receptores ErbB/metabolismo , Femenino , Humanos , Cinética , Ratones , Ratones Desnudos , Mutación/genética , Células 3T3 NIH , Piperazinas/química , Unión Proteica/efectos de los fármacos , Conformación Proteica , Inhibidores de Proteínas Quinasas/química
9.
Oncotarget ; 7(30): 47095-47110, 2016 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-27283990

RESUMEN

Type II germ cell cancers (GCC) are divided into seminomas, which are highly similar to primordial germ cells and embryonal carcinomas (EC), often described as malignant counterparts to embryonic stem cells.Previously, we demonstrated that the development of GCCs is a highly plastic process and strongly influenced by the microenvironment. While orthotopic transplantation into the testis promotes seminomatous growth of the seminoma-like cell line TCam-2, ectopic xenotransplantation into the flank initiates reprogramming into an EC-like fate.During this reprogramming, BMP signaling is inhibited, leading to induction of NODAL signaling, upregulation of pluripotency factors and downregulation of seminoma markers, like SOX17. The pluripotency factor and EC-marker SOX2 is strongly induced.Here, we adressed the molecular role of SOX2 in this reprogramming. Using CRISPR/Cas9-mediated genome-editing, we established SOX2-deficient TCam-2 cells. Xenografting of SOX2-deficient cells into the flank of nude mice resulted in maintenance of a seminoma-like fate, indicated by the histology and expression of OCT3/4, SOX17, TFAP2C, PRDM1 and PRAME. In SOX2-deficient cells, BMP signaling is inhibited, but NODAL signaling is not activated. Thus, SOX2 appears to be downstream of BMP signaling but upstream of NODAL activation. So, SOX2 is an essential factor in acquiring an EC-like cell fate from seminomas.A small population of differentiated cells was identified resembling a mixed non-seminoma. Analyses of these cells revealed downregulation of the pluripotency and seminoma markers OCT3/4, SOX17, PRDM1 and TFAP2C. In contrast, the pioneer factor FOXA2 and its target genes were upregulated, suggesting that FOXA2 might play an important role in induction of non-seminomatous differentiation.


Asunto(s)
Carcinoma Embrionario/patología , Factores de Transcripción SOXB1/metabolismo , Seminoma/patología , Animales , Carcinoma Embrionario/genética , Carcinoma Embrionario/metabolismo , Diferenciación Celular/fisiología , Línea Celular Tumoral , Reprogramación Celular/fisiología , Técnicas de Inactivación de Genes , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Proteína Nodal/metabolismo , Factores de Transcripción SOXB1/deficiencia , Factores de Transcripción SOXB1/genética , Seminoma/genética , Seminoma/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA