Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecology ; 98(1): 211-227, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28052396

RESUMEN

Understanding the genecology of forest trees is critical for gene conservation, for predicting the effects of climate change and climate change adaptation, and for successful reforestation. Although common genecological patterns have emerged, species-specific details are also important. Which species are most vulnerable to climate change? Which are the most important adaptive traits and environmental drivers of natural selection? Even though species have been classified as adaptive specialists vs. adaptive generalists, large-scale studies comparing different species in the same experiment are rare. We studied the genecology of Norway spruce (Picea abies) and silver fir (Abies alba), two co-occurring but ecologically distinct European conifers in Central Europe. For each species, we collected seed from more than 90 populations across Switzerland, established a seedling common-garden test, and developed genecological models that associate population variation in seedling growth and phenology to climate, soil properties, and site water balance. Population differentiation and associations between seedling traits and environmental variables were much stronger for Norway spruce than for silver fir, and stronger for seedling height growth than for bud phenology. In Norway spruce, height growth and second flushing were strongly associated with temperature and elevation, with seedlings from the lowlands being taller and more prone to second flush than seedlings from the Alps. In silver fir, height growth was more weakly associated with temperature and elevation, but also associated with water availability. Soil characteristics explained little population variation in both species. We conclude that Norway spruce has become an adaptive specialist because trade-offs between rapid juvenile growth and frost avoidance have subjected it to strong diversifying natural selection based on temperature. In contrast, because silver fir has a more conservative growth habit, it has evolved to become an adaptive generalist. This study demonstrates that co-occurring tree species can develop very different adaptive strategies under identical environmental conditions, and suggests that Norway spruce might be more vulnerable to future maladaptation due to rapid climate change than silver fir.


Asunto(s)
Abies/genética , Picea/genética , Plantones/genética , Suiza , Árboles
2.
Glob Chang Biol ; 23(12): 5358-5371, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28675600

RESUMEN

Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnerability, and develop strategies to preserve forest health and productivity. We studied potential genetic maladaptation to future climates in three major European tree species, Norway spruce (Picea abies), silver fir (Abies alba), and European beech (Fagus sylvatica). A common garden experiment was conducted to evaluate the quantitative genetic variation in growth and phenology of seedlings from 77 to 92 native populations of each species from across Switzerland. We used multivariate genecological models to associate population variation with past seed source climates, and to estimate relative risk of maladaptation to current and future climates based on key phenotypic traits and three regional climate projections within the A1B scenario. Current risks from climate change were similar to average risks from current seed transfer practices. For all three climate models, future risks increased in spruce and beech until the end of the century, but remained low in fir. Largest average risks associated with climate projections for the period 2061-2090 were found for spruce seedling height (0.64), and for beech bud break and leaf senescence (0.52 and 0.46). Future risks for spruce were high across Switzerland. However, areas of high risk were also found in drought-prone regions for beech and in the southern Alps for fir. Genetic maladaptation to future climates is likely to become a problem for spruce and beech by the end of this century, but probably not for fir. Consequently, forest management strategies should be adjusted in the study area for spruce and beech to maintain productive and healthy forests in the future.


Asunto(s)
Adaptación Fisiológica/genética , Cambio Climático , Árboles/fisiología , Abies/crecimiento & desarrollo , Abies/fisiología , Monitoreo del Ambiente , Fagus/crecimiento & desarrollo , Fagus/fisiología , Bosques , Picea/crecimiento & desarrollo , Picea/fisiología , Riesgo , Plantones/crecimiento & desarrollo , Plantones/fisiología , Suiza , Árboles/crecimiento & desarrollo
3.
New Phytol ; 210(2): 589-601, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26777878

RESUMEN

The evolutionary potential of long-lived species, such as forest trees, is fundamental for their local persistence under climate change (CC). Genome-environment association (GEA) analyses reveal if species in heterogeneous environments at the regional scale are under differential selection resulting in populations with potential preadaptation to CC within this area. In 79 natural Fagus sylvatica populations, neutral genetic patterns were characterized using 12 simple sequence repeat (SSR) markers, and genomic variation (144 single nucleotide polymorphisms (SNPs) out of 52 candidate genes) was related to 87 environmental predictors in the latent factor mixed model, logistic regressions and isolation by distance/environmental (IBD/IBE) tests. SSR diversity revealed relatedness at up to 150 m intertree distance but an absence of large-scale spatial genetic structure and IBE. In the GEA analyses, 16 SNPs in 10 genes responded to one or several environmental predictors and IBE, corrected for IBD, was confirmed. The GEA often reflected the proposed gene functions, including indications for adaptation to water availability and temperature. Genomic divergence and the lack of large-scale neutral genetic patterns suggest that gene flow allows the spread of advantageous alleles in adaptive genes. Thereby, adaptation processes are likely to take place in species occurring in heterogeneous environments, which might reduce their regional extinction risk under CC.


Asunto(s)
Adaptación Fisiológica/genética , Clima , Fagus/genética , Fagus/fisiología , Interacción Gen-Ambiente , Genoma de Planta , Frecuencia de los Genes/genética , Genes de Plantas , Geografía , Polimorfismo de Nucleótido Simple/genética , Selección Genética , Suiza
4.
Ecol Evol ; 9(6): 3335-3354, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30962896

RESUMEN

The density of wild ungulates has increased in the last century, and browsing has become a major driver of forest succession in the northern hemisphere. In addition, tree species are expected to respond differently to future climate conditions, especially an increased frequency of late frost events. The aim of this study was to analyze the influence of intraspecific genetic variation on the recovery of two tree species to frost and browsing. An experiment with saplings from 90 Abies alba and 72 Picea abies seed sources was conducted. Five-year-old saplings were clipped at three intensities before budburst in spring. Growth (height, diameter, leader shoot length, and biomass) and quality (e.g. stem form, multistemming, reaction type) were assessed before and 1-2 years after clipping or 3-4 years after natural frost events, and provenance differences were related to environmental differences at the seed source. For Abies, frost and clipping resulted in reduced height growth in the first year after the stress and reduced height for two (clipping) to four (frost) vegetation periods. Sapling biomass, diameter increment, and quality decreased after heavy clipping. For Picea, which grew twice as fast as Abies, such effects were only found after frost damage. Population differences were significant for both species for all investigated growth traits and for Picea also for some quality variables. The "reaction type" after browsing (e.g. new shoot, existing twig bending upward) seems to be species specific and independent of seed source. In contrast, the time lag between clipping and formation of a clear new leader shoot increased for Abieswith lower temperatures at the seed source. Lowland populations with warmer climates grew faster, and for Picea also qualitatively better, and recovered faster from leader shoot loss (Abies) or reacted at the uppermost meristem (Picea). Thus, the investigated stressors increased the existing differences among populations.

5.
Front Plant Sci ; 7: 751, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379105

RESUMEN

European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5-17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA