Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Anaesth ; 115(1): 112-21, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26089447

RESUMEN

BACKGROUND: The mechanisms by which volatile anaesthetics such as isoflurane alter neuronal function are poorly understood, in particular their presynaptic mechanisms. Presynaptic voltage-gated sodium channels (Na(v)) have been implicated as a target for anaesthetic inhibition of neurotransmitter release. We hypothesize that state-dependent interactions of isoflurane with Na(v) lead to increased inhibition of Na(+) current (I(Na)) during periods of high-frequency neuronal activity. METHODS: The electrophysiological effects of isoflurane, at concentrations equivalent to those used clinically, were measured on recombinant brain-type Na(v)1.2 expressed in ND7/23 neuroblastoma cells and on endogenous Na(v) in isolated rat neurohypophysial nerve terminals. Rate constants determined from experiments on the recombinant channel were used in a simple model of Na(v) gating. RESULTS: At resting membrane potentials, isoflurane depressed peak I(Na) and shifted steady-state inactivation in a hyperpolarizing direction. After membrane depolarization, isoflurane accelerated entry (τ(control)=0.36 [0.03] ms compared with τ(isoflurane)=0.33 [0.05] ms, P<0.05) and slowed recovery (τ(control)=6.9 [1.1] ms compared with τ(isoflurane)=9.0 [1.9] ms, P<0.005) from apparent fast inactivation, resulting in enhanced depression of I(Na), during high-frequency stimulation of both recombinant and endogenous nerve terminal Na(v). A simple model of Na(v) gating involving stabilisation of fast inactivation, accounts for this novel form of activity-dependent block. CONCLUSIONS: Isoflurane stabilises the fast-inactivated state of neuronal Na(v) leading to greater depression of I(Na) during high-frequency stimulation, consistent with enhanced inhibition of fast firing neurones.


Asunto(s)
Anestesia General , Anestésicos por Inhalación/farmacología , Isoflurano/farmacología , Neuronas/efectos de los fármacos , Canales de Sodio/efectos de los fármacos , Animales , Células Cultivadas , Potenciales de la Membrana/efectos de los fármacos , Ratas
4.
Br J Anaesth ; 110(4): 592-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23213036

RESUMEN

BACKGROUND: Presynaptic effects of general anaesthetics are not well characterized. We tested the hypothesis that isoflurane exhibits transmitter-specific effects on neurotransmitter release from neurochemically and functionally distinct isolated mammalian nerve terminals. METHODS: Nerve terminals from adult male rat brain were prelabelled with [(3)H]glutamate and [(14)C]GABA (cerebral cortex), [(3)H]norepinephrine (hippocampus), [(14)C]dopamine (striatum), or [(3)H]choline (precursor of [(3)H]acetylcholine; striatum). Release evoked by depolarizing pulses of 4-aminopyridine (4AP) or elevated KCl was quantified using a closed superfusion system. RESULTS: Isoflurane at clinical concentrations (<0.7 mM; ~2 times median anaesthetic concentration) inhibited Na(+) channel-dependent 4AP-evoked release of the five neurotransmitters tested in a concentration-dependent manner. Isoflurane was a more potent inhibitor [expressed as IC(50) (SEM)] of glutamate release [0.37 (0.03) mM; P<0.05] compared with the release of GABA [0.52 (0.03) mM], norepinephrine [0.48 (0.03) mM], dopamine [0.48 (0.03) mM], or acetylcholine [0.49 (0.02) mM]. Inhibition of Na(+) channel-independent release evoked by elevated K(+) was not significant at clinical concentrations of isoflurane, with the exception of dopamine release [IC(50)=0.59 (0.03) mM]. CONCLUSIONS: Isoflurane inhibited the release of the major central nervous system neurotransmitters with selectivity for glutamate release, consistent with both widespread inhibition and nerve terminal-specific presynaptic effects. Glutamate release was most sensitive to inhibition compared with GABA, acetylcholine, dopamine, and norepinephrine release due to presynaptic specializations in ion channel expression, regulation, and/or coupling to exocytosis. Reductions in neurotransmitter release by volatile anaesthetics could contribute to altered synaptic transmission, leading to therapeutic and toxic effects involving all major neurotransmitter systems.


Asunto(s)
Anestésicos por Inhalación/farmacología , Sistema Nervioso Central/metabolismo , Éteres Metílicos/farmacología , Neurotransmisores/metabolismo , Receptores Presinapticos/efectos de los fármacos , 4-Aminopiridina/farmacología , Acetilcolina/metabolismo , Animales , Sistema Nervioso Central/efectos de los fármacos , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Ácido Glutámico/metabolismo , Masculino , Norepinefrina/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Cloruro de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Presinapticos/metabolismo , Sevoflurano , Estimulación Química , Ácido gamma-Aminobutírico/metabolismo
5.
Br J Anaesth ; 111(2): 143-51, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23722106

RESUMEN

Although previously considered entirely reversible, general anaesthesia is now being viewed as a potentially significant risk to cognitive performance at both extremes of age. A large body of preclinical as well as some retrospective clinical evidence suggest that exposure to general anaesthesia could be detrimental to cognitive development in young subjects, and might also contribute to accelerated cognitive decline in the elderly. A group of experts in anaesthetic neuropharmacology and neurotoxicity convened in Salzburg, Austria for the BJA Salzburg Seminar on Anaesthetic Neurotoxicity and Neuroplasticity. This focused workshop was sponsored by the British Journal of Anaesthesia to review and critically assess currently available evidence from animal and human studies, and to consider the direction of future research. It was concluded that mounting evidence from preclinical studies reveals general anaesthetics to be powerful modulators of neuronal development and function, which could contribute to detrimental behavioural outcomes. However, definitive clinical data remain elusive. Since general anaesthesia often cannot be avoided regardless of patient age, it is important to understand the complex mechanisms and effects involved in anaesthesia-induced neurotoxicity, and to develop strategies for avoiding or limiting potential brain injury through evidence-based approaches.


Asunto(s)
Anestesia General/efectos adversos , Anestésicos Generales/efectos adversos , Encéfalo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Publicaciones Periódicas como Asunto , Anciano , Anciano de 80 o más Años , Animales , Austria , Trastornos del Conocimiento/inducido químicamente , Humanos , Lactante , Reino Unido
6.
Br J Anaesth ; 118(1): 1-2, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28039233
9.
Br J Anaesth ; 107(1): 30-7, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21616941

RESUMEN

It has been assumed that anaesthetics have minimal or no persistent effects after emergence from anaesthesia. However, general anaesthetics act on multiple ion channels, receptors, and cell signalling systems in the central nervous system to produce anaesthesia, so it should come as no surprise that they also have non-anaesthetic actions that range from beneficial to detrimental. Accumulating evidence is forcing the anaesthesia community to question the safety of general anaesthesia at the extremes of age. Preclinical data suggest that inhaled anaesthetics can have profound and long-lasting effects during key neurodevelopmental periods in neonatal animals by increasing neuronal cell death (apoptosis) and reducing neurogenesis. Clinical data remain conflicting on the significance of these laboratory data to the paediatric population. At the opposite extreme in age, elderly patients are recognized to be at an increased risk of postoperative cognitive dysfunction (POCD) with a well-recognized decline in cognitive function after surgery. The underlying mechanisms and the contribution of anaesthesia in particular to POCD remain unclear. Laboratory models suggest anaesthetic interactions with neurodegenerative mechanisms, such as those linked to the onset and progression of Alzheimer's disease, but their clinical relevance remains inconclusive. Prospective randomized clinical trials are underway to address the clinical significance of these findings, but there are major challenges in designing, executing, and interpreting such trials. It is unlikely that definitive clinical studies absolving general anaesthetics of neurotoxicity will become available in the near future, requiring clinicians to use careful judgement when using these profound neurodepressants in vulnerable patients.


Asunto(s)
Anestésicos Generales/efectos adversos , Encéfalo/efectos de los fármacos , Trastornos del Conocimiento/inducido químicamente , Complicaciones Posoperatorias/inducido químicamente , Anciano , Anestésicos Generales/toxicidad , Animales , Encéfalo/crecimiento & desarrollo , Modelos Animales de Enfermedad , Humanos
11.
Br J Anaesth ; 115 Suppl 1: i1-i3, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26174293
15.
Br J Anaesth ; 103(1): 61-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19508978

RESUMEN

General anaesthetics act in an agent-specific manner on synaptic transmission in the central nervous system by enhancing inhibitory transmission and reducing excitatory transmission. The synaptic mechanisms of general anaesthetics involve both presynaptic effects on transmitter release and postsynaptic effects on receptor function. The halogenated volatile anaesthetics inhibit neuronal voltage-gated Na(+) channels at clinical concentrations. Reductions in neurotransmitter release by volatile anaesthetics involve inhibition of presynaptic action potentials as a result of Na(+) channel blockade. Although voltage-gated ion channels have been assumed to be insensitive to general anaesthetics, it is now evident that clinical concentrations of volatile anaesthetics inhibit Na(+) channels in isolated rat nerve terminals and neurons, as well as heterologously expressed mammalian Na(+) channel alpha subunits. Voltage-gated Na(+) channels have emerged as promising targets for some of the effects of the inhaled anaesthetics. Knowledge of the synaptic mechanisms of general anaesthetics is essential for optimization of anaesthetic techniques for advanced surgical procedures and for the development of improved anaesthetics.


Asunto(s)
Anestésicos por Inhalación/farmacología , Canales de Sodio/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Humanos , Activación del Canal Iónico/efectos de los fármacos , Neurotransmisores/metabolismo , Canales de Sodio/fisiología , Sinapsis/efectos de los fármacos , Transmisión Sináptica/fisiología
18.
Br J Anaesth ; 102(3): 355-60, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19189985

RESUMEN

BACKGROUND: Inhaled anaesthetics (IAs) produce multiple dose-dependent behavioural effects including amnesia, hypnosis, and immobility in response to painful stimuli that are mediated by distinct anatomical, cellular, and molecular mechanisms. Amnesia is produced at lower anaesthetic concentrations compared with hypnosis or immobility. Nicotinic acetylcholine receptors (nAChRs) modulate hippocampal neural network correlates of memory and are highly sensitive to IAs. Activation of hippocampal nAChRs stimulates the release of norepinephrine (NE), a neurotransmitter implicated in modulating hippocampal synaptic plasticity. We tested the hypothesis that IAs disrupt hippocampal synaptic mechanisms critical to memory by determining the effects of isoflurane on NE release from hippocampal nerve terminals. METHODS: Isolated nerve terminals prepared from adult male Sprague-Dawley rat hippocampus were radiolabelled with [(3)H]NE and either [(14)C]GABA or [(14)C]glutamate and superfused at 37 degrees C. Release evoked by a 2 min pulse of 100 microM nicotine or 5 microM 4-aminopyridine was evaluated in the presence or absence of isoflurane and/or selective antagonists. RESULTS: Nicotine-evoked NE release from rat hippocampal nerve terminals was nAChR- and Ca(2+)-dependent, involved both alpha7 and non-alpha7 subunit-containing nAChRs, and was partially dependent on voltage-gated Na(+) channel activation based on sensitivities to various antagonists. Isoflurane inhibited nicotine-evoked NE release (IC(50)=0.18 mM) more potently than depolarization-evoked NE release (IC(50)=0.27 mM, P=0.014), consistent with distinct presynaptic mechanisms of IA action. CONCLUSIONS: Inhibition of hippocampal nAChR-dependent NE release by subanaesthetic concentrations of isoflurane supports a role in IA-induced amnesia.


Asunto(s)
Anestésicos por Inhalación/farmacología , Hipocampo/efectos de los fármacos , Isoflurano/farmacología , Norepinefrina/metabolismo , Receptores Nicotínicos/fisiología , 4-Aminopiridina/antagonistas & inhibidores , 4-Aminopiridina/farmacología , Animales , Relación Dosis-Respuesta a Droga , Hipocampo/metabolismo , Masculino , Nicotina/antagonistas & inhibidores , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Bloqueadores de los Canales de Potasio/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Técnicas de Cultivo de Tejidos
20.
Neuron ; 14(2): 385-97, 1995 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-7531987

RESUMEN

In rat neostriatal neurons, D1 dopamine receptors regulate the activity of cyclic AMP-dependent protein kinase (PKA) and protein phosphatase 1 (PP1). The influence of these signaling elements on high voltage-activated (HVA) calcium currents was studied using whole-cell voltage-clamp techniques. The application of D1 agonists or cyclic AMP analogs reversibly reduced N- and P-type Ca2+ currents. Inhibition of PKA antagonized this modulation, as did inhibition of PP1, suggesting that the D1 effect was mediated by a PKA enhancement of PP1 activity directed toward Ca2+ channels. In a subset of neurons, D1 receptor-mediated activation of PKA enhanced L-type currents. The differential regulation of HVA currents by the D1 pathway helps to explain the diversity of effects this pathway has on synaptic integration and plasticity in medium spiny neurons.


Asunto(s)
Encéfalo/fisiología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neostriado/fisiología , Neuronas/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Receptores de Dopamina D1/fisiología , 1-Metil-3-Isobutilxantina/farmacología , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Animales , Encéfalo/efectos de los fármacos , Células Cultivadas , Colforsina/análogos & derivados , Colforsina/farmacología , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Electrofisiología/métodos , Cinética , Potenciales de la Membrana/efectos de los fármacos , Neostriado/enzimología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Nifedipino/farmacología , Proteína Fosfatasa 1 , Ratas , Ratas Wistar , Receptores de Dopamina D1/agonistas , Tetraetilamonio , Compuestos de Tetraetilamonio/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA