Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 293(10): 3546-3561, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29317494

RESUMEN

Inwardly rectifying potassium (Kir) channels establish and regulate the resting membrane potential of excitable cells in the heart, brain, and other peripheral tissues. Phosphatidylinositol 4,5-bisphosphate (PIP2) is a key direct activator of ion channels, including Kir channels. The gasotransmitter carbon monoxide has been shown to regulate Kir channel activity by altering channel-PIP2 interactions. Here, we tested in two cellular models the effects and mechanism of action of another gasotransmitter, hydrogen sulfide (H2S), thought to play a key role in cellular responses under ischemic conditions. Direct administration of sodium hydrogen sulfide as an exogenous H2S source and expression of cystathionine γ-lyase, a key enzyme that produces endogenous H2S in specific brain tissues, resulted in comparable current inhibition of several Kir2 and Kir3 channels. This effect resulted from changes in channel-gating kinetics rather than in conductance or cell-surface localization. The extent of H2S regulation depended on the strength of the channel-PIP2 interactions. H2S regulation was attenuated when channel-PIP2 interactions were strengthened and was increased when channel-PIP2 interactions were weakened by depleting PIP2 levels. These H2S effects required specific cytoplasmic cysteine residues in Kir3.2 channels. Mutation of these residues abolished H2S inhibition, and reintroduction of specific cysteine residues back into the background of the cytoplasmic cysteine-lacking mutant rescued H2S inhibition. Molecular dynamics simulation experiments provided mechanistic insights into how potential sulfhydration of specific cysteine residues could lead to changes in channel-PIP2 interactions and channel gating.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Sulfuro de Hidrógeno/farmacología , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Sulfuros/farmacología , Regulación Alostérica/efectos de los fármacos , Sustitución de Aminoácidos , Animales , Células CHO , Cricetulus , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/metabolismo , Ratones , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Oocitos/citología , Oocitos/metabolismo , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/química , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sulfuros/química , Sulfuros/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA