Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834837

RESUMEN

T-type calcium (CaV3) channels are involved in cardiac automaticity, development, and excitation-contraction coupling in normal cardiac myocytes. Their functional role becomes more pronounced in the process of pathological cardiac hypertrophy and heart failure. Currently, no CaV3 channel inhibitors are used in clinical settings. To identify novel T-type calcium channel ligands, purpurealidin analogs were electrophysiologically investigated. These compounds are alkaloids produced as secondary metabolites by marine sponges, and they exhibit a broad range of biological activities. In this study, we identified the inhibitory effect of purpurealidin I (1) on the rat CaV3.1 channel and conducted structure-activity relationship studies by characterizing the interaction of 119 purpurealidin analogs. Next, the mechanism of action of the four most potent analogs was investigated. Analogs 74, 76, 79, and 99 showed a potent inhibition on the CaV3.1 channel with IC50's at approximately 3 µM. No shift of the activation curve could be observed, suggesting that these compounds act like a pore blocker obstructing the ion flow by binding in the pore region of the CaV3.1 channel. A selectivity screening showed that these analogs are also active on hERG channels. Collectively, a new class of CaV3 channel inhibitors has been discovered and the structure-function studies provide new insights into the synthetic design of drugs and the mechanism of interaction with T-type CaV channels.


Asunto(s)
Poríferos , Ratas , Animales , Miocitos Cardíacos/metabolismo
2.
Med Res Rev ; 42(1): 183-226, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33945158

RESUMEN

Two decades of research have proven the relevance of ion channel expression for tumor progression in virtually every indication, and it has become clear that inhibition of specific ion channels will eventually become part of the oncology therapeutic arsenal. However, ion channels play relevant roles in all aspects of physiology, and specificity for the tumor tissue remains a challenge to avoid undesired effects. Eag1 (KV 10.1) is a voltage-gated potassium channel whose expression is very restricted in healthy tissues outside of the brain, while it is overexpressed in 70% of human tumors. Inhibition of Eag1 reduces tumor growth, but the search for potent inhibitors for tumor therapy suffers from the structural similarities with the cardiac HERG channel, a major off-target. Existing inhibitors show low specificity between the two channels, and screenings for Eag1 binders are prone to enrichment in compounds that also bind HERG. Rational drug design requires knowledge of the structure of the target and the understanding of structure-function relationships. Recent studies have shown subtle structural differences between Eag1 and HERG channels with profound functional impact. Thus, although both targets' structure is likely too similar to identify leads that exclusively bind to one of the channels, the structural information combined with the new knowledge of the functional relevance of particular residues or areas suggests the possibility of selective targeting of Eag1 in cancer therapies. Further development of selective Eag1 inhibitors can lead to first-in-class compounds for the treatment of different cancers.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Neoplasias , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Neoplasias/tratamiento farmacológico
3.
Med Res Rev ; 41(4): 2423-2473, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33932253

RESUMEN

The KV 1.3 voltage-gated potassium ion channel is involved in many physiological processes both at the plasma membrane and in the mitochondria, chiefly in the immune and nervous systems. Therapeutic targeting KV 1.3 with specific peptides and small molecule inhibitors shows great potential for treating cancers and autoimmune diseases, such as multiple sclerosis, type I diabetes mellitus, psoriasis, contact dermatitis, rheumatoid arthritis, and myasthenia gravis. However, no KV 1.3-targeted compounds have been approved for therapeutic use to date. This review focuses on the presentation of approaches for discovering new KV 1.3 peptide and small-molecule inhibitors, and strategies to improve the selectivity of active compounds toward KV 1.3. Selectivity of dalatazide (ShK-186), a synthetic derivate of the sea anemone toxin ShK, was achieved by chemical modification and has successfully reached clinical trials as a potential therapeutic for treating autoimmune diseases. Other peptides and small-molecule inhibitors are critically evaluated for their lead-like characteristics and potential for progression into clinical development. Some small-molecule inhibitors with well-defined structure-activity relationships have been optimized for selective delivery to mitochondria, and these offer therapeutic potential for the treatment of cancers. This overview of KV 1.3 inhibitors and methodologies is designed to provide a good starting point for drug discovery to identify novel effective KV 1.3 modulators against this target in the future.


Asunto(s)
Venenos de Cnidarios , Anémonas de Mar , Animales , Química Farmacéutica , Humanos , Canal de Potasio Kv1.3 , Bloqueadores de los Canales de Potasio/farmacología
4.
Bioorg Chem ; 115: 105264, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34416509

RESUMEN

The discovery of more selective and safer voltage-gated potassium channel blockers is an extremely demanding approach. Designing selective Kv1.5 inhibitors is very challenging as only limited data is available on this target due to a lacking crystal structure for this ion channel receptor. Herein, we synthesized a series of 21 novel quinazolinone dimers 3a-i, 5a-i and 10a-c. We tried to avoid structural features responsible for non-selectivity and for most potassium channel blockers' side effects in our design. In contrast to other works, which lack investigation over wide ranges of potassium and sodium channels, we screened the inhibitory activity of our synthesized compounds over multiple voltage-gated potassium channels, including six different human Kv1 channel subtypes Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5 and Kv1.6 channels as well as Kv2.1, Kv3.1, Kv4.3, Kv7.2, Kv7.3, Kv10.1, hERG, and Shaker IR. Moreover, these compounds' selectivity was investigated on sodium channels Nav1.2, Nav1.4 and Nav1.5 and calcium channels Cav3.1-Cav3.3. The results revealed two compounds (3a and 3e) with low micromolar Kv1.5 inhibition activity with EC50 values of 5.1 ± 0.9 µM and 12.5 ± 1.1 µM, respectively. However, at higher concentrations, they also showed inhibitory activity on Kv1.3 and Kv1.1 channels. This might be due to structural similarities between these three Kv1 channel isoforms. Compound 3a shows a slight preference for Kv1.5. Interestingly, they lack any activity on other potassium channels (including hERG), sodium channels, and calcium channels. Our findings recommend quinazolinone dimers with ethylene linker as a potential new class of safer Kv1 inhibitors and a good start for designing more selective and potent Kv1.5 inhibitors.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Quinazolinonas/farmacología , Canales de Sodio Activados por Voltaje/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Canales de Potasio con Entrada de Voltaje/metabolismo , Quinazolinonas/síntesis química , Quinazolinonas/química , Relación Estructura-Actividad
5.
Bioorg Chem ; 98: 103746, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32199306

RESUMEN

The voltage-gated potassium channel Kv1.3 is involved in multiple autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, diabetes mellitus type 1 and psoriasis. In many auto-immune diseases better treatment options are desired as existing therapies are often ineffective or become less effective over time, for which Kv1.3 inhibitors arise as promising candidates. In this study, five compounds were selected based on a 3D similarity searching methodology and subsequently screened ex vivo on the Kv1.3 channel. The screening resulted in two compounds inhibiting the Kv1.3 channel, of which TVS-12 was the most potent compound, while TVS-06 -although less potent- showed an excellent selectivity for Kv1.3. For both compounds the mechanism of action was investigated by an electrophysiological characterization on the Kv1.3 channel and three Kv1.3 mutants, designed to resemble the pore region of Kv1.2 channels. Structurally, the presence of a benzene ring and/or an oxane ring seems to cause a better interaction with the Kv1.3 channel, resulting in a 20-fold higher potency for TVS-12.


Asunto(s)
Diseño de Fármacos , Canal de Potasio Kv1.3/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Canal de Potasio Kv1.3/metabolismo , Estructura Molecular , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Relación Estructura-Actividad , Xenopus laevis
6.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709050

RESUMEN

Cannabinoid receptors (CB1 and CB2), as part of the endocannabinoid system, play a critical role in numerous human physiological and pathological conditions. Thus, considerable efforts have been made to develop ligands for CB1 and CB2, resulting in hundreds of phyto- and synthetic cannabinoids which have shown varying affinities relevant for the treatment of various diseases. However, only a few of these ligands are clinically used. Recently, more detailed structural information for cannabinoid receptors was revealed thanks to the powerfulness of cryo-electron microscopy, which now can accelerate structure-based drug discovery. At the same time, novel peptide-type cannabinoids from animal sources have arrived at the scene, with their potential in vivo therapeutic effects in relation to cannabinoid receptors. From a natural products perspective, it is expected that more novel cannabinoids will be discovered and forecasted as promising drug leads from diverse natural sources and species, such as animal venoms which constitute a true pharmacopeia of toxins modulating diverse targets, including voltage- and ligand-gated ion channels, G protein-coupled receptors such as CB1 and CB2, with astonishing affinity and selectivity. Therefore, it is believed that discovering novel cannabinoids starting from studying the biodiversity of the species living on planet earth is an uncharted territory.


Asunto(s)
Productos Biológicos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Péptidos/farmacología , Receptores de Cannabinoides/metabolismo , Animales , Productos Biológicos/química , Agonistas de Receptores de Cannabinoides/química , Antagonistas de Receptores de Cannabinoides/química , Cannabinoides/química , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Péptidos/química , Receptores de Cannabinoides/química
8.
Eur J Med Chem ; 259: 115561, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37454520

RESUMEN

Voltage-gated potassium channel KV1.3 inhibitors have been shown to be effective in preventing T-cell proliferation and activation by affecting intracellular Ca2+ homeostasis. Here, we present the structure-activity relationship, KV1.3 inhibition, and immunosuppressive effects of new thiophene-based KV1.3 inhibitors with nanomolar potency on K+ current in T-lymphocytes and KV1.3 inhibition on Ltk- cells. The new KV1.3 inhibitor trans-18 inhibited KV1.3 -mediated current in phytohemagglutinin (PHA)-activated T-lymphocytes with an IC50 value of 26.1 nM and in mammalian Ltk- cells with an IC50 value of 230 nM. The KV1.3 inhibitor trans-18 also had nanomolar potency against KV1.3 in Xenopus laevis oocytes (IC50 = 136 nM). The novel thiophene-based KV1.3 inhibitors impaired intracellular Ca2+ signaling as well as T-cell activation, proliferation, and colony formation.


Asunto(s)
Inmunosupresores , Canales de Potasio con Entrada de Voltaje , Tiofenos , Animales , Mamíferos/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/farmacología , Relación Estructura-Actividad , Linfocitos T , Tiofenos/química , Tiofenos/farmacología , Inmunosupresores/química
9.
Pharmaceutics ; 14(9)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36145712

RESUMEN

Expression of the voltage-gated potassium channel KV10.1 (Eag1) has been detected in over 70% of human cancers, making the channel a promising new target for new anticancer drug discovery. A new structural class of KV10.1 inhibitors was prepared by structural optimisation and exploration of the structure-activity relationship of the previously published hit compound ZVS-08 (1) and its optimised analogue 2. The potency and selectivity of the new inhibitors between KV10.1 and hERG were investigated using whole-cell patch-clamp experiments. We obtained two new optimised KV10.1 inhibitors, 17a and 18b, with improved nanomolar IC50 values of 568 nM and 214 nM, respectively. Compound 17a exhibited better ratio between IC50 values for hEAG1 and hERG than previously published diarylamine inhibitors. Compounds 17a and 18b moderately inhibited the growth of the KV10.1-expressing cell line MCF-7 in two independent assays. In addition, 17a and 18b also inhibited the growth of hERG-expressing Panc-1 cells with higher potency compared with MCF-7 cells. The main obstacle for newly developed diarylamine KV10.1 inhibitors remains the selectivity toward the hERG channel, which needs to be addressed with targeted drug design strategies in the future.

10.
Cancers (Basel) ; 14(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35681571

RESUMEN

The voltage-gated potassium channel KV1.3 has been recognized as a tumor marker and represents a promising new target for the discovery of new anticancer drugs. We designed a novel structural class of KV1.3 inhibitors through structural optimization of benzamide-based hit compounds and structure-activity relationship studies. The potency and selectivity of the new KV1.3 inhibitors were investigated using whole-cell patch- and voltage-clamp experiments. 2D and 3D cell models were used to determine antiproliferative activity. Structural optimization resulted in the most potent and selective KV1.3 inhibitor 44 in the series with an IC50 value of 470 nM in oocytes and 950 nM in Ltk- cells. KV1.3 inhibitor 4 induced significant apoptosis in Colo-357 spheroids, while 14, 37, 43, and 44 significantly inhibited Panc-1 proliferation.

11.
Cancers (Basel) ; 13(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33808994

RESUMEN

(1) Background: The voltage-gated potassium channel KV10.1 (Eag1) is considered a near- universal tumour marker and represents a promising new target for the discovery of novel anticancer drugs. (2) Methods: We utilized the ligand-based drug discovery methodology using 3D pharmacophore modelling and medicinal chemistry approaches to prepare a novel structural class of KV10.1 inhibitors. Whole-cell patch clamp experiments were used to investigate potency, selectivity, kinetics and mode of inhibition. Anticancer activity was determined using 2D and 3D cell-based models. (3) Results: The virtual screening hit compound ZVS-08 discovered by 3D pharmacophore modelling exhibited an IC50 value of 3.70 µM against KV10.1 and inhibited the channel in a voltage-dependent manner consistent with the action of a gating modifier. Structural optimization resulted in the most potent KV10.1 inhibitor of the series with an IC50 value of 740 nM, which was potent on the MCF-7 cell line expressing high KV10.1 levels and low hERG levels, induced significant apoptosis in tumour spheroids of Colo-357 cells and was not mutagenic. (4) Conclusions: Computational ligand-based drug design methods can be successful in the discovery of new potent KV10.1 inhibitors. The main problem in the field of KV10.1 inhibitors remains selectivity against the hERG channel, which needs to be addressed in the future also with target-based drug design methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA