Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Hematol ; 89(10): 985-91, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25042156

RESUMEN

Diamond Blackfan anemia (DBA), a syndrome primarily characterized by anemia and physical abnormalities, is one among a group of related inherited bone marrow failure syndromes (IBMFS) which share overlapping clinical features. Heterozygous mutations or single-copy deletions have been identified in 12 ribosomal protein genes in approximately 60% of DBA cases, with the genetic etiology unexplained in most remaining patients. Unlike many IBMFS, for which functional screening assays complement clinical and genetic findings, suspected DBA in the absence of typical alterations of the known genes must frequently be diagnosed after exclusion of other IBMFS. We report here a novel deletion in a child that presented such a diagnostic challenge and prompted development of a novel functional assay that can assist in the diagnosis of a significant fraction of patients with DBA. The ribosomal proteins affected in DBA are required for pre-rRNA processing, a process which can be interrogated to monitor steps in the maturation of 40S and 60S ribosomal subunits. In contrast to prior methods used to assess pre-rRNA processing, the assay reported here, based on capillary electrophoresis measurement of the maturation of rRNA in pre-60S ribosomal subunits, would be readily amenable to use in diagnostic laboratories. In addition to utility as a diagnostic tool, we applied this technique to gene discovery in DBA, resulting in the identification of RPL31 as a novel DBA gene.


Asunto(s)
Precursores del ARN , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico , Proteínas Ribosómicas , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Femenino , Humanos , Lactante , Células K562 , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
2.
Biochem Biophys Res Commun ; 437(1): 29-34, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23792098

RESUMEN

Shwachman Diamond syndrome (SDS) is an inherited bone marrow failure syndrome typically characterized by neutropenia, exocrine pancreas dysfunction, metaphyseal chondrodysplasia, and predisposition to myelodysplastic syndrome and leukemia. SBDS, the gene affected in most cases of SDS, encodes a protein known to influence many cellular processes including ribosome biogenesis, mitotic spindle assembly, chemotaxis, and the regulation of reactive oxygen species production. The best characterized role for the SBDS protein is in the production of functional 60S ribosomal subunits. Given that a reduction in functional 60S subunits could impact on the translational output of cells depleted of SBDS we analyzed protein synthesis in yeast cells lacking SDO1, the ortholog of SBDS. Cells lacking SDO1 selectively increased the synthesis of POR1, the ortholog of mammalian VDAC1 a major anion channel of the mitochondrial outer membrane. Further studies revealed the cells lacking SDO1 were compromised in growth on non-fermentable carbon sources suggesting mitochondrial function was impaired. These observations prompted us to examine mitochondrial function in human cells where SBDS expression was reduced. Our studies indicate that reduced expression of SBDS decreases mitochondrial membrane potential and oxygen consumption and increases the production of reactive oxygen species. These studies indicate that mitochondrial function is also perturbed in cells expressing reduced amounts of SBDS and indicate that disruption of mitochondrial function may also contribute to SDS pathophysiology.


Asunto(s)
Enfermedades de la Médula Ósea/metabolismo , Enfermedades de la Médula Ósea/patología , Insuficiencia Pancreática Exocrina/metabolismo , Insuficiencia Pancreática Exocrina/patología , Lipomatosis/metabolismo , Lipomatosis/patología , Mitocondrias/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Carbono/farmacología , Línea Celular , Fermentación/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas/metabolismo , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Síndrome de Shwachman-Diamond
3.
Pediatr Blood Cancer ; 60(2): 281-6, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22997148

RESUMEN

BACKGROUND: Shwachman-Diamond syndrome (SDS), associated with SBDS mutations, is characterized by pancreatic exocrine dysfunction and marrow failure. Sdo1, the yeast ortholog of SBDS, is implicated in maturation of the 60S ribosomal subunit, with delayed export of 60S-like particles from the nucleoplasm when depleted. Sdo1 is needed for release of the anti-subunit association factor Tif6 from 60S subunits, and Tif6 may not be recycled to the nucleus when Sdo1 is absent. METHODS: To clarify the role of SBDS in human ribosome function, TF-1 erythroleukemia and A549 lung carcinoma cells were transfected with vectors expressing RNAi against SBDS. RESULTS: Growth and hematopoietic colony forming potential of TF-1 knockdown cells were markedly hindered when compared to controls. To analyze the effect of SBDS on 60S subunit maturation in A549 cells, subunit localization was assessed by transfection with a vector expressing a fusion between human RPL29 and GFP: we found a higher percentage of SBDS-depleted cells with nuclear localization of 60S subunits. Polysome analysis of TF-1 knockdown cells showed a decrease in free 60S and 80S subunits. We also analyzed the levels of eIF6 (human ortholog of Tif6) following near-complete knockdown of SBDS in TF-1 cells and found an approximately 20% increase in the amount of eIF6 associated with the 60S subunit. CONCLUSIONS: We conclude that knockdown of SBDS leads to growth inhibition and defects in ribosome maturation, suggesting a role for wild-type SBDS in nuclear export of pre-60S subunits. Furthermore, knockdown of SBDS may interfere with eIF6 recycling.


Asunto(s)
Hematopoyesis/fisiología , Proteínas/metabolismo , Ribosomas/fisiología , Western Blotting , Línea Celular Tumoral , Proliferación Celular , Técnicas de Silenciamiento del Gen , Humanos , Proteínas/genética , ARN Interferente Pequeño , Transfección
4.
Blood ; 116(15): 2623-5, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20947688

RESUMEN

In this issue of Blood, Devlin and colleagues use a new strategy to create a mouse model for the inherited bone marrow failure syndrome, DBA.The result, while recapitulating certain aspects of the disease and representing a positive step forward, also demonstrates that significant hurdles remain in faithfully creating a mammalian model for DBA.

5.
PLoS One ; 9(2): e89098, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24558476

RESUMEN

Diamond Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome caused by ribosomal protein haploinsufficiency. DBA exhibits marked phenotypic variability, commonly presenting with erythroid hypoplasia, less consistently with non-erythroid features. The p53 pathway, activated by abortive ribosome assembly, is hypothesized to contribute to the erythroid failure of DBA. We studied murine embryonic stem (ES) cell lines harboring a gene trap mutation in a ribosomal protein gene, either Rps19 or Rpl5. Both mutants exhibited ribosomal protein haploinsufficiency and polysome defects. Rps19 mutant ES cells showed significant increase in p53 protein expression, however, there was no similar increase in the Rpl5 mutant cells. Embryoid body formation was diminished in both mutants but nonspecifically rescued by knockdown of p53. When embryoid bodies were further differentiated to primitive erythroid colonies, both mutants exhibited a marked reduction in colony formation, which was again nonspecifically rescued by p53 inhibition. Cell cycle analyses were normal in Rps19 mutant ES cells, but there was a significant delay in the G2/M phase in the Rpl5 mutant cells, which was unaffected by p53 knockdown. Concordantly, Rpl5 mutant ES cells had a more pronounced growth defect in liquid culture compared to the Rps19 mutant cells. We conclude that the defects in our RPS19 and RPL5 haploinsufficient mouse ES cells are not adequately explained by p53 stabilization, as p53 knockdown appears to increase the growth and differentiation potential of both parental and mutant cells. Our studies demonstrate that gene trap mouse ES cells are useful tools to study the pathogenesis of DBA.


Asunto(s)
Anemia de Diamond-Blackfan/metabolismo , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Células Madre Embrionarias/fisiología , Células Eritroides/citología , Proteínas Ribosómicas/genética , Animales , Western Blotting , Ciclo Celular/fisiología , Cartilla de ADN/genética , Haploinsuficiencia , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Ribosómicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA