Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2016): 20232361, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351802

RESUMEN

Reports of fading vole and lemming population cycles and persisting low populations in some parts of the Arctic have raised concerns about the spread of these fundamental changes to tundra food web dynamics. By compiling 24 unique time series of lemming population fluctuations across the circumpolar region, we show that virtually all populations displayed alternating periods of cyclic/non-cyclic fluctuations over the past four decades. Cyclic patterns were detected 55% of the time (n = 649 years pooled across sites) with a median periodicity of 3.7 years, and non-cyclic periods were not more frequent in recent years. Overall, there was an indication for a negative effect of warm spells occurring during the snow onset period of the preceding year on lemming abundance. However, winter duration or early winter climatic conditions did not differ on average between cyclic and non-cyclic periods. Analysis of the time series shows that there is presently no Arctic-wide collapse of lemming cycles, even though cycles have been sporadic at most sites during the last decades. Although non-stationary dynamics appears a common feature of lemming populations also in the past, continued warming in early winter may decrease the frequency of periodic irruptions with negative consequences for tundra ecosystems.


Asunto(s)
Arvicolinae , Ecosistema , Animales , Dinámica Poblacional , Estaciones del Año , Cadena Alimentaria , Regiones Árticas
2.
Proc Biol Sci ; 290(1996): 20222470, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37040809

RESUMEN

Identifying factors that drive infection dynamics in reservoir host populations is essential in understanding human risk from wildlife-originated zoonoses. We studied zoonotic Puumala orthohantavirus (PUUV) in the host, the bank vole (Myodes glareolus), populations in relation to the host population, rodent and predator community and environment-related factors and whether these processes are translated into human infection incidence. We used 5-year rodent trapping and bank vole PUUV serology data collected from 30 sites located in 24 municipalities in Finland. We found that PUUV seroprevalence in the host was negatively associated with the abundance of red foxes, but this process did not translate into human disease incidence, which showed no association with PUUV seroprevalence. The abundance of weasels, the proportion of juvenile bank voles in the host populations and rodent species diversity were negatively associated with the abundance index of PUUV positive bank voles, which, in turn, showed a positive association with human disease incidence. Our results suggest certain predators, a high proportion of young bank vole individuals, and a diverse rodent community, may reduce PUUV risk for humans through their negative impacts on the abundance of infected bank voles.


Asunto(s)
Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Animales , Humanos , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Animales Salvajes , Estudios Seroepidemiológicos , Arvicolinae
3.
Oecologia ; 195(3): 601-622, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33369695

RESUMEN

Most small rodent populations in the world have fascinating population dynamics. In the northern hemisphere, voles and lemmings tend to show population cycles with regular fluctuations in numbers. In the southern hemisphere, small rodents tend to have large amplitude outbreaks with less regular intervals. In the light of vast research and debate over almost a century, we here discuss the driving forces of these different rodent population dynamics. We highlight ten questions directly related to the various characteristics of relevant populations and ecosystems that still need to be answered. This overview is not intended as a complete list of questions but rather focuses on the most important issues that are essential for understanding the generality of small rodent population dynamics.


Asunto(s)
Ecosistema , Roedores , Animales , Arvicolinae , Brotes de Enfermedades , Dinámica Poblacional
4.
Mol Ecol ; 29(9): 1730-1744, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32248595

RESUMEN

The history of repeated northern glacial cycling and southern climatic stability has long dominated explanations for how genetic diversity is distributed within temperate species in Eurasia and North America. However, growing evidence indicates the importance of cryptic refugia for northern colonization dynamics. An important geographic region to assess this is Fennoscandia, where recolonization at the end of the last glaciation was restricted to specific routes and temporal windows. We used genomic data to analyse genetic diversity and colonization history of the bank vole (Myodes glareolus) throughout Europe (>800 samples) with Fennoscandia as the northern apex. We inferred that bank voles colonized Fennoscandia multiple times by two different routes; with three separate colonizations via a southern land-bridge route deriving from a "Carpathian" glacial refugium and one via a north-eastern route from an "Eastern" glacial refugium near the Ural Mountains. Clustering of genome-wide SNPs revealed high diversity in Fennoscandia, with eight genomic clusters: three of Carpathian origin and five Eastern. Time estimates revealed that the first of the Carpathian colonizations occurred before the Younger Dryas (YD), meaning that the first colonists survived the YD in Fennoscandia. Results also indicated that introgression between bank and northern red-backed voles (Myodes rutilus) took place in Fennoscandia just after end-glacial colonization. Therefore, multiple colonizations from the same and different cryptic refugia, temporal and spatial separations and interspecific introgression have shaped bank vole genetic variability in Fennoscandia. Together, these processes drive high genetic diversity at the apex of the northern expansion in this emerging model species.


Asunto(s)
Arvicolinae , Variación Genética , Refugio de Fauna , Animales , Arvicolinae/genética , Europa (Continente) , Genómica , Filogenia
5.
Emerg Infect Dis ; 25(8): 1607-1609, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31310209

RESUMEN

Bank voles in Poland are reservoirs of zoonotic viruses. To determine seroprevalence of hantavirus, arenavirus, and cowpox virus and factors affecting seroprevalence, we screened for antibodies against these viruses over 9 years. Cowpox virus was most prevalent and affected by extrinsic and intrinsic factors. Long-term and multisite surveillance is crucial.


Asunto(s)
Arvicolinae/virología , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/virología , Animales , Estudios Transversales , Femenino , Historia del Siglo XXI , Masculino , Polonia/epidemiología , Estudios Seroepidemiológicos , Zoonosis
6.
Oecologia ; 191(4): 861-871, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31667601

RESUMEN

Climatic conditions, trophic links between species and dispersal may induce spatial synchrony in population fluctuations. Spatial synchrony increases the extinction risk of populations and, thus, it is important to understand how synchrony-inducing mechanisms affect populations already threatened by habitat loss and climate change. For many species, it is unclear how population fluctuations vary over time and space, and what factors potentially drive this variation. In this study, we focus on factors determining population fluctuations and spatial synchrony in the Siberian flying squirrel, Pteromys volans, using long-term monitoring data from 16 Finnish populations located 2-400 km apart. We found an indication of synchronous population dynamics on a large scale in flying squirrels. However, the synchrony was not found to be clearly related to distance between study sites because the populations seemed to be strongly affected by small-scale local factors. The regularity of population fluctuations varied over time. The fluctuations were linked to changes in winter precipitation, which has previously been linked to the reproductive success of flying squirrels. Food abundance (tree mast) and predator abundance were not related to population fluctuations in this study. We conclude that spatial synchrony was not unequivocally related to distance in flying squirrels, as has been observed in earlier studies for more abundant rodent species. Our study also emphasises the role of climate in population fluctuations and the synchrony of the species.


Asunto(s)
Ecosistema , Árboles , Animales , Finlandia , Dinámica Poblacional , Sciuridae
7.
Biol Lett ; 12(9)2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27677814

RESUMEN

Trade-offs in the allocation of finite-energy resources among immunological defences and other physiological processes are believed to influence infection risk and disease severity in food-limited wildlife populations. However, this prediction has received little experimental investigation. Here we test the hypothesis that food limitation impairs the ability of wild field voles (Microtus agrestis) to mount an immune response against parasite infections. We conducted a replicated experiment on vole populations maintained in large outdoor enclosures during boreal winter, using food supplementation and anthelmintic treatment of intestinal nematodes. Innate immune responses against intestinal parasite infections were compared between food-supplemented and non-supplemented voles. Voles with high food availability mounted stronger immune responses against intestinal nematode infections than food-limited voles. No food effects were seen in immune responses to intracellular coccidian parasites, possibly owing to their ability to avoid activation of innate immune pathways. Our findings demonstrate that food availability constrains vole immune responses against nematode infections, and support the concept that spatio-temporal heterogeneity in food availability creates variation in infectious disease susceptibility.

9.
J Gen Virol ; 96(Pt 7): 1664-75, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25787939

RESUMEN

Puumala virus (PUUV, carried by Myodes glareolus) co-circulates with Seewis virus (SWSV, carried by Sorex araneus) in Finland. While PUUV causes 1000-3000 nephropathia epidemica (NE) cases annually, the pathogenicity of SWSV to man is unknown. To study the prevalence of SWSV antibodies in hantavirus fever-like patients' sera, we used recombinant SWSV nucleocapsid (N) protein as the antigen in ELISA, immunofluorescence assay (IFA) and immunoblotting. While characterizing the recombinant SWSV N protein, we observed that a polyclonal rabbit antiserum against PUUV N protein cross-reacted with SWSV N protein and vice versa. We initially screened 486 (450 PUUV-seronegative and 36 PUUV-seropositive) samples sent to Helsinki University Hospital Laboratory for PUUV serodiagnosis during 2002 and 2007 in an SWSV N protein IgG ELISA. In total, 4.2 % (19/450) of the PUUV-seronegative samples were reactive in the SWSV N protein IgG ELISA and none of the tested samples [43 PUUV-seronegative (weakly reactive in the SWSV IgG ELISA) and 15 random] were reactive in the SWSV N protein IgM ELISA. None of the IgG reactions could be confirmed by IFA or immunoblotting. Furthermore, among the 36 PUUV-seropositive samples three were reactive in SWSV N protein IgG and ten in SWSV N protein IgM ELISA. One PUUV-seropositive sample reacted with SWSV N protein in IFA and four in immunoblotting. Finally, we applied competitive ELISA to confirm that the observed reactivity was due to cross-reactivity rather than a true SWSV response. In conclusion, no evidence of SWSV infection was found among the 486 samples studied; however, we did demonstrate that PUUV antiserum cross-reacted with shrew-borne hantavirus N protein.


Asunto(s)
Anticuerpos Antivirales/sangre , Reacciones Cruzadas , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/inmunología , Orthohantavirus/inmunología , Virus Puumala/inmunología , Animales , Antígenos Virales/inmunología , Arvicolinae , Ensayo de Inmunoadsorción Enzimática , Eulipotyphla , Femenino , Finlandia/epidemiología , Técnica del Anticuerpo Fluorescente Indirecta , Infecciones por Hantavirus/virología , Humanos , Immunoblotting , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Nucleocápside/inmunología , Conejos , Estudios Seroepidemiológicos , Musarañas/virología
10.
J Gen Virol ; 96(Pt 6): 1238-1247, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25701819

RESUMEN

The knowledge of viral shedding patterns and viraemia in the reservoir host species is a key factor in assessing the human risk of zoonotic viruses. The shedding of hantaviruses (family Bunyaviridae) by their host rodents has widely been studied experimentally, but rarely in natural settings. Here we present the dynamics of Puumala hantavirus (PUUV) shedding and viraemia in naturally infected wild bank voles (Myodes glareolus). In a monthly capture-mark-recapture study, we analysed 18 bank voles for the presence and relative quantity of PUUV RNA in the excreta and blood from 2 months before up to 8 months after seroconversion. The proportion of animals shedding PUUV RNA in saliva, urine and faeces peaked during the first month after seroconversion, but continued throughout the study period with only a slight decline. The quantity of shed PUUV in reverse transcription quantitative PCR (RT-qPCR) positive excreta was constant over time. In blood, PUUV RNA was present for up to 7 months but both the probability of viraemia and the virus load declined with time. Our findings contradict the current view of a decline in virus shedding after the acute phase and a short viraemic period in hantavirus infection - an assumption widely adopted in current epidemiological models. We suggest the life-long shedding as a means of hantaviruses to survive over host population bottlenecks, and to disperse in fragmented habitats where local host and/or virus populations face temporary extinctions. Our results indicate that the kinetics of pathogens in wild hosts may differ considerably from those observed in laboratory settings.


Asunto(s)
Arvicolinae/virología , Reservorios de Enfermedades , Fiebre Hemorrágica con Síndrome Renal/veterinaria , Virus Puumala/aislamiento & purificación , Enfermedades de los Roedores/virología , Esparcimiento de Virus , Animales , Sangre/virología , Heces/virología , Femenino , Fiebre Hemorrágica con Síndrome Renal/virología , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Carga Viral , Viremia
11.
Proc Biol Sci ; 282(1816): 20151939, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26446813

RESUMEN

While pathogens are often assumed to limit the growth of wildlife populations, experimental evidence for their effects is rare. A lack of food resources has been suggested to enhance the negative effects of pathogen infection on host populations, but this theory has received little investigation. We conducted a replicated two-factor enclosure experiment, with introduction of the bacterium Bordetella bronchiseptica and food supplementation, to evaluate the individual and interactive effects of pathogen infection and food availability on vole populations during a boreal winter. We show that prior to bacteria introduction, vole populations were limited by food availability. Bordetella bronchiseptica introduction then reduced population growth and abundance, but contrary to predictions, primarily in food supplemented populations. Infection prevalence and pathological changes in vole lungs were most common in food supplemented populations, and are likely to have resulted from increased congregation and bacteria transmission around feeding stations. Bordetella bronchiseptica-infected lungs often showed protozoan co-infection (consistent with Hepatozoon erhardovae), together with more severe inflammatory changes. Using a multidisciplinary approach, this study demonstrates a complex picture of interactions and underlying mechanisms, leading to population-level effects. Our results highlight the potential for food provisioning to markedly influence disease processes in wildlife mammal populations.


Asunto(s)
Arvicolinae , Infecciones por Bordetella/veterinaria , Bordetella bronchiseptica/fisiología , Dieta/veterinaria , Suplementos Dietéticos/análisis , Enfermedades de los Roedores/microbiología , Animales , Infecciones por Bordetella/microbiología , Femenino , Finlandia , Masculino , Dinámica Poblacional , Crecimiento Demográfico , Distribución Aleatoria , Estaciones del Año
12.
Artículo en Inglés | MEDLINE | ID: mdl-26006298

RESUMEN

The dynamics of animal populations are greatly influenced by interactions with their natural enemies and food resources. However, quantifying the relative effects of these factors on demographic rates remains a perpetual challenge for animal population ecology. Food scarcity is assumed to limit the growth and to initiate the decline of cyclic herbivore populations, but this has not been verified with physiological health indices. We hypothesized that individuals in declining populations would exhibit signs of malnutrition-induced deterioration of physiological condition. We evaluated the association of body condition with population cycle phase in bank voles (Myodes glareolus) during the increase and decline phases of a population cycle. The bank voles had lower body masses, condition indices and absolute masses of particular organs during the decline. Simultaneously, they had lower femoral masses, mineral contents and densities. Hemoglobin and hematocrit values and several parameters known to respond to food deprivation were unaffected by the population phase. There were no signs of lymphopenia, eosinophilia, granulocytosis or monocytosis. Erythrocyte counts were higher and plasma total protein levels and tissue proportions of essential polyunsaturated fatty acids lower in the population decline. Ectoparasite load was lower and adrenal gland masses or catecholamine concentrations did not suggest higher stress levels. Food availability seems to limit the size of voles during the decline but they can adapt to the prevailing conditions without clear deleterious health effects. This highlights the importance of quantifying individual health state when evaluating the effects of complex trophic interactions on the dynamics of wild animal populations.


Asunto(s)
Arvicolinae/fisiología , Dinámica Poblacional , Animales , Femenino , Masculino
13.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25122229

RESUMEN

Across species, there is usually a positive relationship between sperm competition level and male reproductive effort on ejaculates, typically measured using relative testes size (RTS). Within populations, demographic and ecological processes may drastically alter the level of sperm competition and thus, potentially affect the evolution of testes size. Here, we use longitudinal records (across 38 years) from wild sympatric Fennoscandian populations of five species of voles to investigate whether RTS responds to natural fluctuations in population density, i.e. variation in sperm competition risk. We show that for some species RTS increases with density. However, our results also show that this relationship can be reversed in populations with large-scale between-year differences in density. Multiple mechanisms are suggested to explain the negative RTS-density relationship, including testes size response to density-dependent species interactions, an evolutionary response to sperm competition levels that is lagged when density fluctuations are over a certain threshold, or differing investment in pre- and post-copulatory competition at different densities. The results emphasize that our understanding of sperm competition in fluctuating environments is still very limited.


Asunto(s)
Arvicolinae/anatomía & histología , Testículo/anatomía & histología , Animales , Evolución Biológica , Finlandia , Masculino , Tamaño de los Órganos , Densidad de Población , Especificidad de la Especie , Simpatría
14.
Proc Biol Sci ; 281(1797)2014 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-25355481

RESUMEN

The cyclic population dynamics of vole and predator communities is a key phenomenon in northern ecosystems, and it appears to be influenced by climate change. Reports of collapsing rodent cycles have attributed the changes to warmer winters, which weaken the interaction between voles and their specialist subnivean predators. Using population data collected throughout Finland during 1986-2011, we analyse the spatio-temporal variation in the interactions between populations of voles and specialist, generalist and avian predators, and investigate by simulations the roles of the different predators in the vole cycle. We test the hypothesis that vole population cyclicity is dependent on predator-prey interactions during winter. Our results support the importance of the small mustelids for the vole cycle. However, weakening specialist predation during winters, or an increase in generalist predation, was not associated with the loss of cyclicity. Strengthening of delayed density dependence coincided with strengthening small mustelid influence on the summer population growth rates of voles. In conclusion, a strong impact of small mustelids during summers appears highly influential to vole population dynamics, and deteriorating winter conditions are not a viable explanation for collapsing small mammal population cycles.


Asunto(s)
Arvicolinae/fisiología , Aves/fisiología , Mamíferos/fisiología , Conducta Predatoria , Animales , Cambio Climático , Europa (Continente) , Modelos Teóricos , Densidad de Población , Dinámica Poblacional
15.
J Virol ; 87(20): 10918-35, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23926354

RESUMEN

Boid inclusion body disease (BIBD) is a progressive, usually fatal disease of constrictor snakes, characterized by cytoplasmic inclusion bodies (IB) in a wide range of cell types. To identify the causative agent of the disease, we established cell cultures from BIBD-positive and -negative boa constrictors. The IB phenotype was maintained in cultured cells of affected animals, and supernatants from these cultures caused the phenotype in cultures originating from BIBD-negative snakes. Viruses were purified from the supernatants by ultracentrifugation and subsequently identified as arenaviruses. Purified virus also induced the IB phenotype in naive cells, which fulfilled Koch's postulates in vitro. One isolate, tentatively designated University of Helsinki virus (UHV), was studied in depth. Sequencing confirmed that UHV is a novel arenavirus species that is distinct from other known arenaviruses including those recently identified in snakes with BIBD. The morphology of UHV was established by cryoelectron tomography and subtomographic averaging, revealing the trimeric arenavirus spike structure at 3.2-nm resolution. Immunofluorescence, immunohistochemistry, and immunoblotting with a polyclonal rabbit antiserum against UHV and reverse transcription-PCR (RT-PCR) revealed the presence of genetically diverse arenaviruses in a large cohort of snakes with BIBD, confirming the causative role of arenaviruses. Some snakes were also found to carry arenavirus antibodies. Furthermore, mammalian cells (Vero E6) were productively infected with UHV, demonstrating the potential of arenaviruses to cross species barriers. In conclusion, we propose the newly identified lineage of arenaviruses associated with BIBD as a novel taxonomic entity, boid inclusion body disease-associated arenaviruses (BIBDAV), in the family Arenaviridae.


Asunto(s)
Infecciones por Arenaviridae/veterinaria , Arenavirus/clasificación , Arenavirus/aislamiento & purificación , Serpientes/virología , Animales , Infecciones por Arenaviridae/virología , Arenavirus/genética , Arenavirus/ultraestructura , Células Cultivadas , Análisis por Conglomerados , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Cuerpos de Inclusión , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Ultracentrifugación , Virión/ultraestructura
16.
Rev Med Virol ; 23(1): 35-49, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22761056

RESUMEN

Hantaviruses (genus Hantavirus, family Bunyaviridae) are enveloped tri-segmented negative-stranded RNA viruses each carried by a specific rodent or insectivore host species. Several different hantaviruses known to infect humans circulate in Europe. The most common is Puumala (PUUV) carried by the bank vole; another two important, genetically closely related ones are Dobrava-Belgrade (DOBV) and Saaremaa viruses (SAAV) carried by Apodemus mice (species names follow the International Committee on Taxonomy of Viruses nomenclature). Of the two hantaviral diseases, hemorrhagic fever with renal syndrome (HFRS) and hantaviral cardiopulmonary syndrome, the European viruses cause only HFRS: DOBV with often severe symptoms and a high case fatality rate, and PUUV and SAAV more often mild disease. More than 10,000 HFRS cases are diagnosed annually in Europe and in increasing numbers. Whether this is because of increasing recognition by the medical community or due to environmental factors such as climate change, or both, is not known. Nevertheless, in large areas of Europe, the population has a considerable seroprevalence but only relatively few HFRS cases are reported. Moreover, no epidemiological data are available from many countries. We know now that cardiac, pulmonary, ocular and hormonal disorders are, besides renal changes, common during the acute stage of PUUV and DOBV infection. About 5% of hospitalized PUUV and 16%-48% of DOBV patients require dialysis and some prolonged intensive-care treatment. Although PUUV-HFRS has a low case fatality rate, complications and long-term hormonal, renal, and cardiovascular consequences commonly occur. No vaccine or specific therapy is in general use in Europe. We conclude that hantaviruses have a significant impact on public health in Europe.


Asunto(s)
Infecciones por Hantavirus/epidemiología , Orthohantavirus/fisiología , Animales , Europa (Continente)/epidemiología , Orthohantavirus/clasificación , Orthohantavirus/genética , Orthohantavirus/aislamiento & purificación , Infecciones por Hantavirus/complicaciones , Infecciones por Hantavirus/virología , Humanos , Salud Pública
17.
Mil Med ; 189(3-4): 551-555, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-37428512

RESUMEN

INTRODUCTION: Hantaviruses cause two kinds of clinical syndromes. Hemorrhagic fever with renal syndrome is caused by Hantaan virus in Asia, Puumala virus (PUUV) and Dobrava virus in Europe, and Seoul virus worldwide. Hantavirus cardiopulmonary syndrome is caused by Sin Nombre virus in North America and Andes virus and related viruses in Latin America. All hantaviruses are carried by rodents and insectivores. Humans are infected via inhaled aerosols of rodent excreta. In the history, there are several epidemics of acute infectious diseases during many wars, which have been suggested or proven to be caused by various hantaviruses. MATERIALS AND METHODS: Literature review of 41 original publications and reviews published between 1943 and 2022 was performed. Among them, 23 publications handle hantavirus infections among military forces, and the rest 17 hantavirus infections themselves. RESULTS: A large epidemic during World War II in 1942 among German and Finnish soldiers in Northern Finland with more than 1,000 patients was most probably caused by PUUV. During Korean War in 1951-1954,∼ 3,200 cases occurred among United Nations soldiers in an epidemic caused by Hantaan virus. During Balkan war from 1991 to 1995, numerous soldiers got ill because of hantavirus infection caused by PUUV and Dobrava virus. Several other reports of cases of various hantavirus infections especially among U.S. soldiers acting in South Korea, Germany, Bosnia, and Kosovo have been described in the literature. CONCLUSIONS: Military maneuvers usually include soil removal, spreading, digging with accompanied dust, and living in field and other harsh conditions, which easily expose soldiers to rodents and their excreta. Therefore, the risks of hantavirus infections in military context are obvious. All military infections have been caused by hantaviruses leading to hemorrhagic fever with renal syndrome.


Asunto(s)
Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Personal Militar , Orthohantavirus , Animales , Humanos , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/complicaciones , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/etiología , Roedores
18.
Prev Vet Med ; 229: 106228, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850871

RESUMEN

To prevent foodborne infections from pigs and cattle, the whole food chain must act to minimize the contamination of products, including biosecurity measures which prevent infections via feed and the environment in production farms. Rodents and other small mammals can be reservoirs of and key vectors for transmitting zoonotic bacteria and viruses to farm animals, through direct contact but more often through environmental contamination. In line with One Health concept, we integrated results from a sampling study of small mammals in farm environments and data from a capture-recapture experiment into a probabilistic model which quantifies the degree of environmental exposure of zoonotic bacteria by small mammals to farm premises. We investigated more than 1200 small mammals trapped in and around 38 swine and cattle farm premises in Finland in 2017/2018. Regardless of the farm type, the most common species caught were the yellow-necked mouse (Apodemus flavicollis), bank vole (Clethrionomys glareolus), and house mouse (Mus musculus). Of 554 intestine samples (each pooled from 1 to 10 individuals), 33% were positive for Campylobacter jejuni. Yersinia enterocolitica was detected in 8% of the pooled samples, on 21/38 farm premises. Findings of Salmonella and the Shiga-toxin producing Escherichia coli (STEC) were rare: the pathogens were detected in only single samples from four and six farm premises, respectively. The prevalence of Campylobacter, Salmonella, Yersinia and STEC in small mammal populations was estimated as 26%/13%, 1%/0%, 2%/3%, 1%/1%, respectively, in 2017/2018. The exposure probability within the experimental period of four weeks on farms was 17-60% for Campylobacter and 0-3% for Salmonella. The quantitative model is readily applicable to similar integrative studies. Our results indicate that small mammals increase the risk of exposure to zoonotic bacteria in animal production farms, thus increasing risks also for livestock and human health.


Asunto(s)
Enfermedades de los Bovinos , Enfermedades de los Porcinos , Animales , Bovinos , Porcinos , Prevalencia , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/transmisión , Finlandia/epidemiología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/transmisión , Roedores/microbiología , Zoonosis Bacterianas/epidemiología , Zoonosis Bacterianas/microbiología , Zoonosis/epidemiología , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/microbiología , Medición de Riesgo , Granjas
19.
J Comp Physiol B ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678156

RESUMEN

The increased limb bone density documented previously for aquatic tetrapods has been proposed to be an adaptation to overcome buoyancy during swimming and diving. It can be achieved by increasing the amount of bone deposition or by reducing the amount of bone resorption, leading to cortical thickening, loss of medullary cavity, and compaction of trabecular bone. The present study examined the effects of locomotor habit, body size, and phylogeny on the densitometric, cross-sectional, and biomechanical traits of femoral diaphysis and neck in terrestrial, semiaquatic, and aquatic carnivores, and in terrestrial and semiaquatic rodents (12 species) by using peripheral quantitative computed tomography, three-point bending, and femoral neck loading tests. Groupwise differences were analyzed with the univariate generalized linear model and the multivariate linear discriminant analysis supplemented with hierarchical clustering. While none of the individual features could separate the lifestyles or species adequately, the combinations of multiple features produced very good or excellent classifications and clusterings. In the phocid seals, the aquatic niche allowed for lower femoral bone mineral densities than expected based on the body mass alone. The semiaquatic mammals mostly had high bone mineral densities compared to the terrestrial species, which could be considered an adaptation to overcome buoyancy during swimming and shallow diving. Generally, it seems that different osteological properties at the levels of mineral density and biomechanics could be compatible with the adaptation to aquatic, semiaquatic, or terrestrial niches.

20.
Ecol Evol ; 14(3): e10886, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455148

RESUMEN

Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (Clethrionomys glareolus) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA