Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 117, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715127

RESUMEN

BACKGROUND: Despite the high prevalence of neuropathic pain, treating this neurological disease remains challenging, given the limited efficacy and numerous side effects associated with current therapies. The complexity in patient management is largely attributed to an incomplete understanding of the underlying pathological mechanisms. Central sensitization, that refers to the adaptation of the central nervous system to persistent inflammation and heightened excitatory transmission within pain pathways, stands as a significant contributor to persistent pain. Considering the role of the cystine/glutamate exchanger (also designated as system xc-) in modulating glutamate transmission and in supporting neuroinflammatory responses, we investigated the contribution of this exchanger in the development of neuropathic pain. METHODS: We examined the implication of system xc- by evaluating changes in the expression/activity of this exchanger in the dorsal spinal cord of mice after unilateral partial sciatic nerve ligation. In this surgical model of neuropathic pain, we also examined the consequence of the genetic suppression of system xc- (using mice lacking the system xc- specific subunit xCT) or its pharmacological manipulation (using the pharmacological inhibitor sulfasalazine) on the pain-associated behavioral responses. Finally, we assessed the glial activation and the inflammatory response in the spinal cord by measuring mRNA and protein levels of GFAP and selected M1 and M2 microglial markers. RESULTS: The sciatic nerve lesion was found to upregulate system xc- at the spinal level. The genetic deletion of xCT attenuated both the amplitude and the duration of the pain sensitization after nerve surgery, as evidenced by reduced responses to mechanical and thermal stimuli, and this was accompanied by reduced glial activation. Consistently, pharmacological inhibition of system xc- had an analgesic effect in lesioned mice. CONCLUSION: Together, these observations provide evidence for a role of system xc- in the biochemical processes underlying central sensitization. We propose that the reduced hypersensitivity observed in the transgenic mice lacking xCT or in sulfasalazine-treated mice is mediated by a reduced gliosis in the lumbar spinal cord and/or a shift in microglial M1/M2 polarization towards an anti-inflammatory phenotype in the absence of system xc-. These findings suggest that drugs targeting system xc- could contribute to prevent or reduce neuropathic pain.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Neuralgia , Enfermedades Neuroinflamatorias , Animales , Femenino , Ratones , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+/deficiencia , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Biomarcadores/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/complicaciones , Gliosis/tratamiento farmacológico , Gliosis/fisiopatología , Ácido Glutámico/metabolismo , Hiperalgesia/tratamiento farmacológico , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Neuralgia/complicaciones , Neuralgia/tratamiento farmacológico , Neuralgia/fisiopatología , Neuralgia/prevención & control , Enfermedades Neuroinflamatorias/complicaciones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/fisiopatología , Enfermedades Neuroinflamatorias/prevención & control , Fenotipo , Reproducibilidad de los Resultados , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neuropatía Ciática/complicaciones , Neuropatía Ciática/fisiopatología , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/fisiopatología , Sulfasalazina/farmacología , Sulfasalazina/uso terapéutico
2.
Brain Behav Immun ; 118: 275-286, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447884

RESUMEN

xCT (Slc7a11), the specific subunit of the cystine/glutamate antiporter system xc-, is present in the brain and on immune cells, where it is known to modulate behavior and inflammatory responses. In a variety of cancers -including pancreatic ductal adenocarcinoma (PDAC)-, xCT is upregulated by tumor cells to support their growth and spread. Therefore, we studied the impact of xCT deletion in pancreatic tumor cells (Panc02) and/or the host (xCT-/- mice) on tumor burden, inflammation, cachexia and mood disturbances. Deletion of xCT in the tumor strongly reduced tumor growth. Targeting xCT in the host and not the tumor resulted only in a partial reduction of tumor burden, while it did attenuate tumor-related systemic inflammation and prevented an increase in immunosuppressive regulatory T cells. The latter effect could be replicated by specific xCT deletion in immune cells. xCT deletion in the host or the tumor differentially modulated neuroinflammation. When mice were grafted with xCT-deleted tumor cells, hypothalamic inflammation was reduced and, accordingly, food intake improved. Tumor bearing xCT-/- mice showed a trend of reduced hippocampal neuroinflammation with less anxiety- and depressive-like behavior. Taken together, targeting xCT may have beneficial effects on pancreatic cancer-related comorbidities, beyond reducing tumor burden. The search for novel and specific xCT inhibitors is warranted as they may represent a holistic therapy in pancreatic cancer.


Asunto(s)
Enfermedades Neuroinflamatorias , Neoplasias Pancreáticas , Ratones , Animales , Encéfalo , Inflamación , Hipocampo
3.
J Clin Psychopharmacol ; 43(2): 167-170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825857

RESUMEN

BACKGROUND/PURPOSE: Caffeine is the most commonly used psychostimulant worldwide. Although its large intake is suspected to worsen psychotic symptoms because of increasing dopamine neurotransmission, schizophrenic patients are heavier caffeine consumers than the general population. This study aims to assess the impact of a caffeine restriction policy in a psychiatric hospital on patient psychopathology, hospitalization characteristics, and psychotropic prescribing patterns. METHODS: It is a retrospective cross-sectional study based on electronic health records of a psychiatric hospital in the French-speaking area of Belgium. Two different periods were compared, the first (n = 142), in 2017, when caffeine was available in the institution and the second (n = 119), between November 2018 and November 2019 after the restriction of access to caffeine was implemented. Adult inpatients with schizophrenia or schizoaffective disorder admitted for an acute hospitalization were included. Antipsychotic exposure, benzodiazepine daily dose, Global Assessment of Functioning scores, length of hospital stay, and some other factors were tested for their potential association with the decaffeinated period. RESULTS: After adjusting for potential confounders, reduced caffeine availability inside the hospital was significantly associated with higher Global Assessment of Functioning scores at discharge (adjusted odds ratio [aOR] = 2.86, 95% confidence interval [CI] = 1.77-4.62) and shorter hospital stays (aOR = 0.68, 95% CI = 0.47-0.99) but was not associated with change in antipsychotic exposure at discharge (aOR = 1.04, 95% CI = 0.64-1.7) or benzodiazepine daily dose (aOR = 0.89, 95% CI = 0.61-1.29). CONCLUSIONS: Limiting access to caffeine in psychiatric hospitals is a simple and inexpensive intervention that should be promoted, especially for patients with schizophrenia.


Asunto(s)
Antipsicóticos , Esquizofrenia , Adulto , Humanos , Esquizofrenia/tratamiento farmacológico , Antipsicóticos/uso terapéutico , Cafeína/uso terapéutico , Estudios Retrospectivos , Pacientes Internos , Registros Electrónicos de Salud , Estudios Transversales , Benzodiazepinas/uso terapéutico
4.
Mol Psychiatry ; 27(4): 2355-2368, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35181756

RESUMEN

The cystine/glutamate antiporter system xc- has been identified as the major source of extracellular glutamate in several brain regions as well as a modulator of neuroinflammation, and genetic deletion of its specific subunit xCT (xCT-/-) is protective in mouse models for age-related neurological disorders. However, the previously observed oxidative shift in the plasma cystine/cysteine ratio of adult xCT-/- mice led to the hypothesis that system xc- deletion would negatively affect life- and healthspan. Still, till now the role of system xc- in physiological aging remains unexplored. We therefore studied the effect of xCT deletion on the aging process of mice, with a particular focus on the immune system, hippocampal function, and cognitive aging. We observed that male xCT-/- mice have an extended lifespan, despite an even more increased plasma cystine/cysteine ratio in aged compared to adult mice. This oxidative shift does not negatively impact the general health status of the mice. On the contrary, the age-related priming of the innate immune system, that manifested as increased LPS-induced cytokine levels and hypothermia in xCT+/+ mice, was attenuated in xCT-/- mice. While this was associated with only a very moderate shift towards a more anti-inflammatory state of the aged hippocampus, we observed changes in the hippocampal metabolome that were associated with a preserved hippocampal function and the retention of hippocampus-dependent memory in male aged xCT-/- mice. Targeting system xc- is thus not only a promising strategy to prevent cognitive decline, but also to promote healthy aging.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Cistina , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Cisteína , Cistina/metabolismo , Ácido Glutámico , Hipocampo/metabolismo , Longevidad , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Mol Psychiatry ; 26(9): 4754-4769, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32366950

RESUMEN

The astrocytic cystine/glutamate antiporter system xc- represents an important source of extracellular glutamate in the central nervous system, with potential impact on excitatory neurotransmission. Yet, its function and importance in brain physiology remain incompletely understood. Employing slice electrophysiology and mice with a genetic deletion of the specific subunit of system xc-, xCT (xCT-/- mice), we uncovered decreased neurotransmission at corticostriatal synapses. This effect was partly mitigated by replenishing extracellular glutamate levels, indicating a defect linked with decreased extracellular glutamate availability. We observed no changes in the morphology of striatal medium spiny neurons, the density of dendritic spines, or the density or ultrastructure of corticostriatal synapses, indicating that the observed functional defects are not due to morphological or structural abnormalities. By combining electron microscopy with glutamate immunogold labeling, we identified decreased intracellular glutamate density in presynaptic terminals, presynaptic mitochondria, and in dendritic spines of xCT-/- mice. A proteomic and kinomic screen of the striatum of xCT-/- mice revealed decreased expression of presynaptic proteins and abnormal kinase network signaling, that may contribute to the observed changes in postsynaptic responses. Finally, these corticostriatal deregulations resulted in a behavioral phenotype suggestive of autism spectrum disorder in the xCT-/- mice; in tests sensitive to corticostriatal functioning we recorded increased repetitive digging behavior and decreased sociability. To conclude, our findings show that system xc- plays a previously unrecognized role in regulating corticostriatal neurotransmission and influences social preference and repetitive behavior.


Asunto(s)
Trastorno del Espectro Autista , Ácido Glutámico , Animales , Antiportadores , Trastorno del Espectro Autista/genética , Cistina , Ratones , Proteómica , Interacción Social
6.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328642

RESUMEN

Numerous intervention strategies have been developed to promote functional tissue repair following experimental spinal cord injury (SCI), including the bridging of lesion-induced cystic cavities with bioengineered scaffolds. Integration between such implanted scaffolds and the lesioned host spinal cord is critical for supporting regenerative growth, but only moderate-to-low degrees of success have been reported. Light and electron microscopy were employed to better characterise the fibroadhesive scarring process taking place after implantation of a longitudinally microstructured type-I collagen scaffold into unilateral mid-cervical resection injuries of the adult rat spinal cord. At long survival times (10 weeks post-surgery), sheets of tightly packed cells (of uniform morphology) could be seen lining the inner surface of the repaired dura mater of lesion-only control animals, as well as forming a barrier along the implant-host interface of the scaffold-implanted animals. The highly uniform ultrastructural features of these scarring cells and their anatomical continuity with the local, reactive spinal nerve roots strongly suggest their identity to be perineurial-like cells. This novel aspect of the cellular composition of reactive spinal cord tissue highlights the increasingly complex nature of fibroadhesive scarring involved in traumatic injury, and particularly in response to the implantation of bioengineered collagen scaffolds.


Asunto(s)
Colágeno Tipo I , Traumatismos de la Médula Espinal , Animales , Cicatriz/patología , Colágeno/química , Regeneración Nerviosa/fisiología , Ratas , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Andamios del Tejido/química
7.
Pharmacol Res ; 160: 105148, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32858121

RESUMEN

Neuropathic pain, a specific type of chronic pain resulting from persistent nervous tissue lesions, is a debilitating condition that affects about 7% of the population. This condition remains particularly difficult to treat because of the poor understanding of its underlying mechanisms. Drugs currently used to alleviate this chronic pain syndrome are of limited benefit due to their lack of efficacy and the elevated risk of side effects, especially after a prolonged period of treatment. Although drugs targeting G protein-coupled receptors (GPCR) also have several limitations, such as progressive loss of efficacy due to receptor desensitization or unavoidable side effects due to wide receptor distribution, the identification of several molecular partners that contribute to the fine-tuning of receptor activity has raised new opportunities for the development of alternative therapeutic approaches. Regulators of G protein signalling (RGS) act intracellularly by influencing the coupling process and activity of G proteins, and are amongst the best-characterized physiological modulators of GPCR. Changes in RGS expression have been documented in a range of models of neuropathic pain, or after prolonged treatment with diverse analgesics, and could participate in altered pain processing as well as impaired physiological or pharmacological control of nociceptive signals. The present review summarizes the experimental data that implicates RGS in the development of pain with focus on the pathological mechanisms of neuropathic pain, including the impact of neuropathic lesions on RGS expression and, reciprocally, the influence of modifying RGS on GPCRs involved in the modulation of nociception as well as on the outcome of pain. In this context, we address the question of the relevance of RGS as promising targets in the treatment of neuropathic pain.


Asunto(s)
Proteínas de Unión al GTP/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Dolor Crónico , Proteínas de Unión al GTP/agonistas , Humanos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/efectos de los fármacos
8.
Glia ; 66(4): 749-761, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29266405

RESUMEN

Accumulating evidence indicates that motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is a non-cell-autonomous process and that impaired glutamate clearance by astrocytes, leading to excitotoxicity, could participate in progression of the disease. In astrocytes derived from an animal model of ALS (hSOD1G93A rats), activation of type 5 metabotropic glutamate receptor (mGluR5) fails to increase glutamate uptake, impeding a putative dynamic neuroprotective mechanism involving astrocytes. Using astrocyte cultures from hSOD1G93A rats, we have demonstrated that the typical Ca2+ oscillations associated with mGluR5 activation were reduced, and that the majority of cells responded with a sustained elevation of intracellular Ca2+ concentration. Since the expression of protein kinase C epsilon isoform (PKCɛ) has been found to be considerably reduced in astrocytes from hSOD1G93A rats, the consequences of manipulating its activity and expression on mGluR5 signaling and on the regulation of glutamate uptake have been examined. Increasing PKCɛ expression was found to restore Ca2+ oscillations induced by mGluR5 activation in hSOD1G93A -expressing astrocytes. This was also associated with an increase in glutamate uptake capacity in response to mGluR5 activation. Conversely, reducing PKCɛ expression in astrocytes from wild-type animals with specific PKCɛ-shRNAs was found to alter the mGluR5 associated oscillatory signaling profile, and consistently reduced the regulation of the glutamate uptake-mediated by mGluR5 activation. These results suggest that PKCɛ is required to generate Ca2+ oscillations following mGluR5 activation, which support the regulation of astrocytic glutamate uptake. Reduced expression of astrocytic PKCɛ could impair this neuroprotective process and participate in the progression of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Astrocitos/enzimología , Ácido Glutámico/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Cationes Bivalentes/metabolismo , Células Cultivadas , Corteza Cerebral/enzimología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células HEK293 , Humanos , Proteína Quinasa C-epsilon/genética , Ratas Sprague-Dawley , Ratas Transgénicas , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
9.
Brain Behav Immun ; 74: 96-105, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30071254

RESUMEN

The prevalence of obesity has increased at an alarming rate during past decades. Obesity is associated with pathophysiological disorders that can evolve and increase the risk of heart disease, diabetes and hypertension. While the impact of diabetes on post-operative recovery is now known, the consequences of obesity on post-operative pain remain much less explored. Here, we show that obesity affects post-operative pain resolution and leads to a chronic pain state in mice. Several mechanisms were identified as implicated in the prolonged post-operative pain. Indeed, we found that following a hind paw incision, high fat diet prolonged glial cell activation in the spinal cord. It also altered the expression of neurotrophins and increased inflammatory and endoplasmic reticulum stress markers in both central and peripheral nervous systems. Moreover, we show that a dietary intervention, leading to weight reduction and decreased inflammation, was able to restore normal pain sensitivity in mice suffering from chronic pain for more than 10 weeks. In conclusion, our data demonstrate that obesity is responsible for pain chronicization. This is clearly of importance in a clinical post-operative setting.


Asunto(s)
Umbral del Dolor/fisiología , Dolor Postoperatorio/dietoterapia , Animales , Astrocitos/metabolismo , Dieta Alta en Grasa/efectos adversos , Hiperalgesia/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/efectos de los fármacos , Neuroglía/metabolismo , Obesidad/metabolismo , Obesidad/fisiopatología , Dolor Postoperatorio/fisiopatología , Médula Espinal/metabolismo
10.
J Neurochem ; 141(3): 387-399, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28266711

RESUMEN

A critical role has been assigned to protein kinase C (PKC)ε in the control of intracellular calcium oscillations triggered upon activation of type 5 metabotropic glutamate receptor (mGluR5) in cultured astrocytes. Nevertheless, the physiological significance of this particular signalling profile in the response of astrocytes to glutamate remains largely unknown. Considering that kinases are frequently involved in the regulation of G protein-coupled receptors, we have examined a putative link between the nature of the calcium signals and the response regulation upon repeated exposures of astrocytes to the agonist (S)-3,5-dihydroxyphenylglycine. We show that upon repeated mGluR5 activations, a robust desensitization was observed in astrocytes grown in culture conditions favouring the peak-plateau-type response. At variance, in cell cultures where calcium oscillations were predominating, the response was fully preserved even during repeated challenges with the agonist. Pharmacological inhibition of PKCε or genetic suppression of this isoform using shRNA was found to convert an oscillatory calcium profile to a sustained calcium mobilization and this latter profile was subject to desensitization upon repetitive mGluR5 activation. Our results suggest a yet undocumented scheme in which the activity of PKCε contributes to preserve the receptor sensitivity upon repeated or sustained activations. Cover Image for this issue: doi: 10.1111/jnc.13797.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa C-epsilon/metabolismo , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/metabolismo , Alcanos/farmacología , Animales , Astrocitos/efectos de los fármacos , Ciclopropanos/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Lentivirus/genética , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Transducción Genética
11.
J Neuroinflammation ; 14(1): 209, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29078779

RESUMEN

BACKGROUND: Regulators of G-protein signaling (RGS) are major physiological modulators of G-protein-coupled receptors (GPCR) signaling. Several GPCRs expressed in both neurons and astrocytes participate in the central control of pain processing, and the reduced efficacy of analgesics in neuropathic pain conditions may rely on alterations in RGS function. The expression and the regulation of RGS in astrocytes is poorly documented, and we herein hypothesized that neuroinflammation which is commonly observed in neuropathic pain could influence RGS expression in astrocytes. METHODS: In a validated model of neuropathic pain, the spared nerve injury (SNI), the regulation of RGS2, RGS3, RGS4, and RGS7 messenger RNA (mRNA) was examined up to 3 weeks after the lesion. Changes in the expression of the same RGS were also studied in cultured astrocytes exposed to defined activation protocols or to inflammatory cytokines. RESULTS: We evidenced a differential regulation of these RGS in the lumbar spinal cord of animals undergoing SNI. In particular, RGS3 appeared upregulated at early stages after the lesion whereas expression of RGS2 and RGS4 was decreased at later stages. Decrease in RGS7 expression was already observed after 3 days and outlasted until 21 days after the lesion. In cultured astrocytes, we observed that changes in the culture conditions distinctly influenced the constitutive expression of these RGS. Also, brief exposures (4 to 8 h) to either interleukin-1ß, interleukin-6, or tumor necrosis factor α caused rapid changes in the mRNA levels of the RGS, which however did not strictly recapitulate the regulations observed in the spinal cord of lesioned animals. Longer exposure (48 h) to inflammatory cytokines barely influenced RGS expression, confirming the rapid but transient regulation of these cell signaling modulators. CONCLUSION: Changes in the environment of astrocytes mimicking the inflammation observed in the model of neuropathic pain can affect RGS expression. Considering the role of astrocytes in the onset and progression of neuropathic pain, we propose that the inflammation-mediated modulation of RGS in astrocytes constitutes an adaptive mechanism in a context of neuroinflammation and may participate in the regulation of nociception.


Asunto(s)
Astrocitos/metabolismo , Mediadores de Inflamación/metabolismo , Neuralgia/metabolismo , Proteínas RGS/biosíntesis , Animales , Astrocitos/patología , Células Cultivadas , Femenino , Inflamación/metabolismo , Inflamación/patología , Neuralgia/patología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
12.
Paediatr Anaesth ; 27(6): 665-666, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28233924

RESUMEN

Interstitial 2p deletions are very rare and may include proopiomelanocortin (POMC) gene (2p23.3). Our 10-year-old patient, known to carry this genetic anomaly, underwent an endoscopic interventional procedure under general anesthesia. After a sevoflurane induction, alfentanil (8.5 µg·kg-1 ) was given. The procedure lasted 22 min. There was an unexpected delayed recovery likely reflecting an unexpected delayed recovery likely due to opioid hypersensitivity. The deletion of POMC may cause a deficit in endorphin and may lead to an up-regulation of opioid receptors. Exogenous opioids should be used with particular caution in patients suffering a deficit of POMC.


Asunto(s)
Periodo de Recuperación de la Anestesia , Anestesia General , Endoscopía Gastrointestinal , Proopiomelanocortina/genética , Alfentanilo , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/uso terapéutico , Anestésicos por Inhalación , Anestésicos Intravenosos , Niño , Cromosomas Humanos Par 2 , Eliminación de Gen , Humanos , Masculino , Éteres Metílicos , Sevoflurano
13.
Metab Brain Dis ; 30(6): 1369-77, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26152932

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motoneurons. While the principal cause of the disease remains so far unknown, the onset and progression of the pathology are increasingly associated with alterations in the control of cell metabolism. On the basis of the well-known key roles of 5'-adenosine monophosphate-activated protein kinase (AMPK) in sensing and regulating the intracellular energy status, we hypothesized that mice with a genetic deletion of AMPK would develop locomotor abnormalities that bear similarity with those detected in the very early disease stage of mice carrying the ALS-associated mutated gene hSOD1(G93A). Using an automated gait analysis system (CatWalk), we here show that hSOD1(G93A) mice and age-matched mice lacking the neuronal and skeletal muscle predominant α2 catalytic subunit of AMPK showed an altered gait, clearly different from wild type control mice. Double mutant mice lacking AMPK α2 and carrying hSOD1(G93A) showed the same early gait abnormalities as hSOD1(G93A) mice over an age span of 8 to 16 weeks. Taken together, these data support the concept that altered AMPK function and associated bioenergetic abnormalities could constitute an important component in the early pathogenesis of ALS. Therapeutic interventions acting on metabolic pathways could prove beneficial on early locomotor deficits, which are sensitively detectable in rodent models using the CatWalk system.


Asunto(s)
Adenilato Quinasa/deficiencia , Adenilato Quinasa/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/psicología , Trastornos Neurológicos de la Marcha/metabolismo , Trastornos Neurológicos de la Marcha/psicología , Envejecimiento/psicología , Animales , Progresión de la Enfermedad , Metabolismo Energético/genética , Trastornos Neurológicos de la Marcha/etiología , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
14.
J Neuroinflammation ; 11: 157, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25212534

RESUMEN

BACKGROUND: Multipotent mesenchymal stem (stromal) cells (MSCs) have been credited with immunomodulative properties, supporting beneficial outcomes when transplanted into a variety of disease models involving inflammation. Potential mechanisms include the secretion of paracrine factors and the establishment of a neurotrophic microenvironment. To test the hypothesis that MSCs release soluble mediators that can attenuate local inflammation, we here analysed the influence of MSCs on the activation of microglia cells, as well as on inflammatory parameters and pain behaviour in a surgical rat model of neuropathic pain. METHODS: We focussed on an experimental model of partial sciatic nerve ligation (PSNL), characterised by a rapid and persistent inflammation in the dorsal lumbar spinal cord where sensory inputs from the sciatic nerve are processed. Via indwelling intrathecal catheters, MSCs were repetitively grafted into the intrathecal lumbar space. Animals were evaluated for mechanical and thermal hypersensitivity over a period of 21 days after PSNL. Afterwards, spinal cords were processed for immunohistochemical analysis of the microglial marker ionized calcium-binding adapter molecule 1 (Iba1) and quantification of inflammatory markers in ipsilateral dorsal horns. We hypothesised that injections on postsurgical days 2 to 4 would interfere with microglial activation, leading to a reduced production of pro-inflammatory cytokines and amelioration of pain behaviour. RESULTS: PSNL-induced mechanical allodynia or heat hyperalgesia were not influenced by MSC transplantation, and spinal cord inflammatory processes remained largely unaffected. Indeed, the early microglial response to PSNL characterised by increased Iba1 expression in the lumbar dorsal horn was not significantly altered and cytokine levels in the spinal cord at 21 days after surgery were similar to those found in vehicle-injected animals. Grafted MSCs were detected close to the pia mater, but were absent within the spinal cord parenchyma. CONCLUSIONS: We conclude that intrathecal administration is not an appropriate route to deliver cells for treatment of acute spinal cord inflammation as it leads to entrapment of grafted cells within the pia mater. We propose that the early inflammatory response triggered by PSNL in the lumbar spinal cord failed to effectively recruit MSCs or was insufficient to disturb the tissue integrity so as to allow MSCs to penetrate the spinal cord parenchyma.


Asunto(s)
Hiperalgesia/terapia , Inflamación/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Neuralgia/terapia , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Hiperalgesia/etiología , Inmunohistoquímica , Inflamación/etiología , Inyecciones Espinales , Traumatismos de los Nervios Periféricos/complicaciones , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/patología
15.
Cells ; 13(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391904

RESUMEN

Acting as GTPase activating proteins promoting the silencing of activated G-proteins, regulators of G protein signaling (RGSs) are generally considered negative modulators of cell signaling. In the CNS, the expression of RGS4 is altered in diverse pathologies and its upregulation was reported in astrocytes exposed to an inflammatory environment. In a model of cultured cortical astrocytes, we herein investigate the influence of RGS4 on intracellular calcium signaling mediated by type 5 metabotropic glutamate receptor (mGluR5), which is known to support the bidirectional communication between neurons and glial cells. RGS4 activity was manipulated by exposure to the inhibitor CCG 63802 or by infecting the cells with lentiviruses designed to achieve the silencing or overexpression of RGS4. The pharmacological inhibition or silencing of RGS4 resulted in a decrease in the percentage of cells responding to the mGluR5 agonist DHPG and in the proportion of cells showing typical calcium oscillations. Conversely, RGS4-lentivirus infection increased the percentage of cells showing calcium oscillations. While the physiological implication of cytosolic calcium oscillations in astrocytes is still under investigation, the fine-tuning of calcium signaling likely determines the coding of diverse biological events. Indirect signaling modulators such as RGS4 inhibitors, used in combination with receptor ligands, could pave the way for new therapeutic approaches for diverse neurological disorders with improved efficacy and selectivity.


Asunto(s)
Proteínas RGS , Receptores de Glutamato Metabotrópico , Ratas , Animales , Receptores de Glutamato Metabotrópico/metabolismo , Calcio/metabolismo , Astrocitos/metabolismo , Ratas Sprague-Dawley , Proteínas RGS/metabolismo , Proteínas de Unión al GTP/metabolismo , Señalización del Calcio
16.
J Neurochem ; 125(3): 473-85, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23216451

RESUMEN

Peroxiredoxin-5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca²âº homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca²âº fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH-SY5Y cells to dissect the role of this enzyme in 1-methyl-4-phenylpyridinium (MPP)⁺-induced cell death. Our data show that mitochondria-dependent apoptosis triggered by MPP⁺, assessed by the measurement of caspase-9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca²âº, Ca²âº-dependent activation of calpains and Bax cleavage. Finally, using Ca²âº channel inhibitors (Nimodipine, Dantrolene and 2-APB), we show that Ca²âº release arises essentially from ER stores through 1,4,5-inositol-trisphosphate receptors (IP3 R). Altogether, our results suggest that the MPP⁺ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca²âº transporters via a crosstalk between mitochondria and ER.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Apoptosis/efectos de los fármacos , Dopaminérgicos/farmacología , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Peroxirredoxinas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Compuestos de Boro/farmacología , Calcio/metabolismo , Calpaína/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Hidroliasas/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Neuroblastoma/patología , Peroxirredoxinas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Transfección , Tirosina/análogos & derivados , Tirosina/metabolismo
17.
Synapse ; 67(8): 532-40, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23436724

RESUMEN

Best known for its interaction with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluA2 and for its influence on excitatory synapse activity, the protein interacting with C kinase, PICK1, is the focus of considerable attention from neurobiologists. Indeed, this PSD-95/DlgA/ZO-1 (PDZ) domain-containing protein has been shown to interact with a wide variety of neurotransmitter receptors, transporters, and enzymes, including glutamate and nicotinic acetylcholine receptors, dopamine and glutamate transporters, and the enzyme serine racemase. Through its lipid binding domain, PICK1 is targeted to the inner surface of the cell membrane where it contributes to anchoring these partners and thereby influences their synaptic localization and function. Under pathological conditions, the regulation of some PICK1-interacting partners is altered, pointing to an involvement of PICK1 in neurological disorders. Also, genetic or pharmacological manipulations of PICK1 expression, localization, or function have been shown to influence several physiological or pathological processes in which putative PICK1 partners are involved. This review will summarize recent experimental observations that highlight the involvement of PICK1 in neurological disorders, including schizophrenia, Parkinson's disease, epilepsy, chronic pain, drug abuse, and amyotrophic lateral sclerosis.


Asunto(s)
Proteínas Portadoras/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Humanos , Enfermedades del Sistema Nervioso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Dominios PDZ , Receptores AMPA/metabolismo , Sinapsis/metabolismo
18.
Bioorg Med Chem ; 21(22): 7107-17, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24095010

RESUMEN

Under hypoxia, cancer cells consume glucose and release lactate at a high rate. Lactate was recently documented to be recaptured by oxygenated cancer cells to fuel the TCA cycle and thereby to support tumor growth. Monocarboxylate transporters (MCT) are the main lactate carriers and therefore represent potential therapeutic targets to limit cancer progression. In this study, we have developed and implemented a stepwise in vitro screening procedure on human cancer cells to identify new potent MCT inhibitors. Various 7-substituted carboxycoumarins and quinolinone derivatives were synthesized and pharmacologically evaluated. Most active compounds were obtained using a palladium-catalyzed Buchwald-Hartwig type coupling reaction, which proved to be a quick and efficient method to obtain aminocarboxycoumarin derivatives. Inhibition of lactate flux revealed that the most active compound 19 (IC50 11 nM) was three log orders more active than the CHC reference compound. Comparison with warfarin, a conventional anticoagulant coumarin, further showed that compound 19 did not influence the prothrombin time which, together with a good in vitro ADME profile, supports the potential of this new family of compounds to act as anticancer drugs through inhibition of lactate flux.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Cumarinas/síntesis química , Cumarinas/farmacología , Lactatos/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Semivida , Humanos , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Quinolonas/química
19.
Pharmacol Ther ; 245: 108392, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958527

RESUMEN

With L-DOPA, dopamine agonists such as pramipexole, ropinirole and rotigotine constitute key therapeutic options for the management of motor symptoms of Parkinson's disease. These compounds exert their beneficial effect on motor behaviours by activating dopamine D2-class receptors and thereby compensating for the declining dopaminergic transmission in the dorsal striatum. Despite a strong similarity in their mechanism of action, these three dopamine agonists present distinct clinical profiles, putatively underpinned by differences in their pharmacological properties. In this context, this review aims at contributing to close the gap between clinical observations and data from molecular neuropharmacology by exploring the properties of pramipexole, ropinirole and rotigotine from both the clinical and molecular perspectives. Indeed, this review first summarizes and compares the clinical features of these three dopamine agonists, and then explores their binding profiles at the different dopamine receptor subtypes. Moreover, the signalling profiles of pramipexole, ropinirole and rotigotine at the D2 receptor are recapitulated, with a focus on biased signalling and the potential therapeutic implications. Overall, this review aims at providing a unifying framework of interpretation for both clinicians and fundamental pharmacologists interested in a deep understanding of the pharmacological properties of pramipexole, ropinirole and rotigotine.


Asunto(s)
Agonistas de Dopamina , Dopamina , Humanos , Pramipexol/farmacología , Agonistas de Dopamina/farmacología , Agonistas de Dopamina/uso terapéutico , Receptores Dopaminérgicos , Antiparkinsonianos/farmacología , Antiparkinsonianos/uso terapéutico
20.
Biomolecules ; 13(8)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37627248

RESUMEN

Alterations in the activity of the regulator of cell metabolism AMP-activated protein kinase (AMPK) have been reported in motor neurons from patients and animal models of amyotrophic lateral sclerosis (ALS). Considering the key role played by astrocytes in modulating energy metabolism in the nervous system and their compromised support towards neurons in ALS, we examined whether a putative alteration in AMPK expression/activity impacted astrocytic functions such as their metabolic plasticity and glutamate handling capacity. We found a reduced expression of AMPK mRNA in primary cultures of astrocytes derived from transgenic rats carrying an ALS-associated mutated superoxide dismutase (hSOD1G93A). The activation of AMPK after glucose deprivation was reduced in hSOD1G93A astrocytes compared to non-transgenic. This was accompanied by a lower increase in ATP levels and increased vulnerability to this insult, although the ATP production rate did not differ between the two cell types. Furthermore, soliciting the activity of glutamate transporters was found to induce similar AMPK activity in these cells. However, manipulation of AMPK activity did not influence glutamate transport. Together, these results suggest that the altered AMPK responsiveness in ALS might be context dependent and may compromise the metabolic adaptation of astrocytes in response to specific cellular stress.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ratas , Animales , Esclerosis Amiotrófica Lateral/genética , Astrocitos , Proteínas Quinasas Activadas por AMP , Neuronas Motoras , Ácido Glutámico , Superóxido Dismutasa-1/genética , Adenosina Trifosfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA