Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 60(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38256379

RESUMEN

Background and Objectives: The role and the levels of ghrelin in diabetes-induced retinal damage have not yet been explored. The present study aimed to measure the serum levels of total ghrelin (TG), and its acylated (AG) and des-acylated (DAG) forms in patients with the two stages of diabetic retinopathy (DR), non-proliferative (NPDR) and proliferative (PDR). Moreover, the correlation between serum ghrelin and neutrophil elastase (NE) levels was investigated. Materials and Methods: The serum markers were determined via enzyme-linked immunosorbent assays in 12 non-diabetic subjects (CTRL), 15 diabetic patients without DR (Diabetic), 15 patients with NPDR, and 15 patients with PDR. Results: TG and AG serum levels were significantly decreased in Diabetic (respectively, p < 0.05 and p < 0.01 vs. CTRL), NPDR (p < 0.01 vs. Diabetic), and in PDR patients (p < 0.01 vs. NPDR). AG serum levels were inversely associated with DR abnormalities (microhemorrhages, microaneurysms, and exudates) progression (r = -0.83, p < 0.01), serum neutrophil percentage (r = -0.74, p < 0.01), and serum NE levels (r = -0.73, p < 0.01). The latter were significantly increased in the Diabetic (p < 0.05 vs. CTRL), NPDR (p < 0.01 vs. Diabetic), and PDR (p < 0.01 vs. PDR) groups. Conclusions: The two DR stages were characterized by decreased AG and increased NE levels. In particular, serum AG levels were lower in PDR compared to NPDR patients, and serum NE levels were higher in the PDR vs. the NPDR group. Together with the greater presence of retinal abnormalities, this could underline a distinctive role of AG in PDR compared to NPDR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Elastasa de Leucocito , Ghrelina , Ensayo de Inmunoadsorción Enzimática , Exudados y Transudados
2.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37298672

RESUMEN

Diabetic retinopathy (DR) is the most frequent microvascular retinal complication of diabetic patients, contributing to loss of vision. Recently, retinal neuroinflammation and neurodegeneration have emerged as key players in DR progression, and therefore, this review examines the neuroinflammatory molecular basis of DR. We focus on four important aspects of retinal neuroinflammation: (i) the exacerbation of endoplasmic reticulum (ER) stress; (ii) the activation of the NLRP3 inflammasome; (iii) the role of galectins; and (iv) the activation of purinergic 2X7 receptor (P2X7R). Moreover, this review proposes the selective inhibition of galectins and the P2X7R as a potential pharmacological approach to prevent the progression of DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/etiología , Enfermedades Neuroinflamatorias , Galectinas/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamasomas/metabolismo , Receptores Purinérgicos P2X7 , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
3.
Rev Cardiovasc Med ; 23(6): 219, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39077187

RESUMEN

Venous thromboembolic (VTE) events have been increasingly reported in patients with coronavirus disease 2019 (COVID-19) after hospital discharge. Acute pulmonary embolism (PE) is the most frequent type of post-discharge VTE complication. Levels of procoagulants (fibrinogen, factor VIII, von Willebrand factor), and D-dimer are higher during the SARS-CoV-2 infection. Patients with more severe inflammatory and procoagulant response experience higher VTE rates during hospitalization, while the risk after hospital discharge have not been well characterized. The incidence of VTE events following hospitalization is heterogeneous, ranging from low (3.1 per 1000 discharges), to 1.8%, which appears higher than for other medical condition. This discrepancy was partially explained by the differences in VTE screening and follow-up strategies, and by the period when the information about the VTE was collected. These data were based mainly on observational and retrospective studies; however, evolving data are to come after the completion of the prospective trials. The current guidelines do not recommend routine post-hospital VTE prophylaxis for COVID-19 patients but recommend it for all hospitalized adults. A careful risk-benefit assessment of VTE probability should be performed, to determine whether an individual patient may merit post-discharge thromboprophylaxis. A score such IMPROVE DD can help identify the patient who will potentially benefit but is also important to consider the bleeding risk and the feasibility. The optimal duration and the type of extended thromboprophylaxis is still under debate (from a minimum of 14 days to a maximum of 42 days), and future studies will help to validate these protocols in different populations. Direct oral anticoagulants (DOACs), warfarin and low molecular weight heparin (LMWH) are recommended, but low doses of DOACs rather than LMVH or warfarin were predominantly used in most patients. Finally, the COVID-19 patients should be educated to recognize and advised to seek urgent medical care should VTE events occur after hospital discharge.

4.
Int J Mol Sci ; 23(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35628357

RESUMEN

Galectins are ten family members of carbohydrate-binding proteins with a high affinity for ß galactose-containing oligosaccharides. Galectin-1 (Gal-1) is the first protein discovered in the family, expressed in many sites under normal and pathological conditions. In the first part of the review article, we described recent advances in the Gal-1 modulatory role on wound healing, by focusing on the different phases triggered by Gal-1, such as inflammation, proliferation, tissue repair and re-epithelialization. On the contrary, Gal-1 persistent over-expression enhances angiogenesis and extracellular matrix (ECM) production via PI3K/Akt pathway activation and leads to keloid tissue. Therefore, the targeted Gal-1 modulation should be considered a method of choice to treat wound healing and avoid keloid formation. In the second part of the review article, we discuss studies clarifying the role of Gal-1 in the pathogenesis of proliferative diabetic retinopathy, liver, renal, pancreatic and pulmonary fibrosis. This evidence suggests that Gal-1 may become a biomarker for the diagnosis and prognosis of tissue fibrosis and a promising molecular target for the development of new and original therapeutic tools to treat fibrosis in different chronic diseases.


Asunto(s)
Galectina 1 , Queloide , Fibrosis , Humanos , Fosfatidilinositol 3-Quinasas , Cicatrización de Heridas/fisiología
5.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897786

RESUMEN

Pulmonary fibrosis is a consequence of the pathological accumulation of extracellular matrix (ECM), which finally leads to lung scarring. Although the pulmonary fibrogenesis is almost known, the last two years of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its post effects added new particularities which need to be explored. Many questions remain about how pulmonary fibrotic changes occur within the lungs of COVID-19 patients, and whether the changes will persist long term or are capable of resolving. This review brings together existing knowledge on both COVID-19 and pulmonary fibrosis, starting with the main key players in promoting pulmonary fibrosis, such as alveolar and endothelial cells, fibroblasts, lipofibroblasts, and macrophages. Further, we provide an overview of the main molecular mechanisms driving the fibrotic process in connection with Galactin-1, -3, -8, and -9, together with the currently approved and newly proposed clinical therapeutic solutions given for the treatment of fibrosis, based on their inhibition. The work underlines the particular pathways and processes that may be implicated in pulmonary fibrosis pathogenesis post-SARS-CoV-2 viral infection. The recent data suggest that galectin-1, -3, -8, and -9 could become valuable biomarkers for the diagnosis and prognosis of lung fibrosis post-COVID-19 and promising molecular targets for the development of new and original therapeutic tools to treat the disease.


Asunto(s)
COVID-19 , Fibrosis Pulmonar , COVID-19/complicaciones , Células Endoteliales/metabolismo , Galectina 1 , Humanos , Pandemias , Fibrosis Pulmonar/metabolismo , SARS-CoV-2
6.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008918

RESUMEN

Over the years, natural-based scaffolds have presented impressive results for bone tissue engineering (BTE) application. Further, outstanding interactions have been observed during the interaction of graphene oxide (GO)-reinforced biomaterials with both specific cell cultures and injured bone during in vivo experimental conditions. This research hereby addresses the potential of fish gelatin/chitosan (GCs) hybrids reinforced with GO to support in vitro osteogenic differentiation and, further, to investigate its behavior when implanted ectopically. Standard GCs formulation was referenced against genipin (Gp) crosslinked blend and 0.5 wt.% additivated GO composite (GCsGp/GO 0.5 wt.%). Pre-osteoblasts were put in contact with these composites and induced to differentiate in vitro towards mature osteoblasts for 28 days. Specific bone makers were investigated by qPCR and immunolabeling. Next, CD1 mice models were used to assess de novo osteogenic potential by ectopic implantation in the subcutaneous dorsum pocket of the animals. After 4 weeks, alkaline phosphate (ALP) and calcium deposits together with collagen synthesis were investigated by biochemical analysis and histology, respectively. Further, ex vivo materials were studied after surgery regarding biomineralization and morphological changes by means of qualitative and quantitative methods. Furthermore, X-ray diffraction and Fourier-transform infrared spectroscopy underlined the newly fashioned material structuration by virtue of mineralized extracellular matrix. Specific bone markers determination stressed the osteogenic phenotype of the cells populating the material in vitro and successfully differentiated towards mature bone cells. In vivo results of specific histological staining assays highlighted collagen formation and calcium deposits, which were further validated by micro-CT. It was observed that the addition of 0.5 wt.% GO had an overall significant positive effect on both in vitro differentiation and in vivo bone cell recruitment in the subcutaneous region. These data support the GO bioactivity in osteogenesis mechanisms as being self-sufficient to elevate osteoblast differentiation and bone formation in ectopic sites while lacking the most common osteoinductive agents.


Asunto(s)
Biopolímeros/farmacología , Diferenciación Celular , Grafito/farmacología , Osteogénesis , Células 3T3 , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Osteogénesis/efectos de los fármacos , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Tejido Subcutáneo/efectos de los fármacos , Andamios del Tejido/química , Difracción de Rayos X , Microtomografía por Rayos X
7.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35562891

RESUMEN

The most frequent retinal diseases, such as diabetic retinopathy, age-related macular degeneration and posterior uveitis, are underlined by oxidative stress or aging-induced retinal inflammation, which contributes to vision impairing or loss. Resolution of inflammation is emerging as a critical phase able to counteract the inflammatory process leading to the progression of retinal damage. Particularly, pro-resolving mediators (PMs) play a key role in the modulation of inflammatory exudates and could be considered a new target to be investigated in different inflammatory-autoimmune pathologies. Here, we highlight the most recent studies concerning the role of the main PMs (lipoxins, resolvins, prtectins, maresins and annexins) in retinal inflammation, in order to collect the best evidence in the field of inflammatory retinal damage resolution and to propose novel pharmacological approaches in the management of the most common retinal diseases.


Asunto(s)
Lipoxinas , Enfermedades de la Retina , Ácidos Docosahexaenoicos , Humanos , Inflamación/patología , Mediadores de Inflamación
8.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077579

RESUMEN

Background: Diabetic retinopathy (DR) is a neurovascular disease, characterized by a deficiency of brain-derived neurotrophic factor (BDNF), a regulator of autophagy. Beta-hydroxybutyrate (BHB), previously reported as a protective agent in DR, has been associated with BDNF promotion. Here, we investigated whether systemic BHB affects the retinal levels of BDNF and local autophagy in diabetic mice with retinopathy; Methods: C57BL/6J mice were administered with intraperitoneal (i.p.) streptozotocin (STZ) (75 mg/kg) injection to develop diabetes. After 2 weeks, they received i.p. injections of BHB (25−50−100 mg/kg) twice a week for 10 weeks. Retinal samples were collected in order to perform immunofluorescence, Western blotting, and ELISA analysis; Results: BHB 50 mg/kg and 100 mg/kg significantly improved retinal BDNF levels (p < 0.01) in diabetic mice. This improvement was negatively associated with autophagosome−lysosome formations (marked by LC3B and ATG14) and to higher levels of connexin 43 (p < 0.01), a marker of cell integrity. Moreover, BHB administration significantly reduced M1 microglial activation and autophagy (p < 0.01); Conclusions: The systemic administration of BHB in mice with DR improves the retinal levels of BDNF, with the consequent reduction of the abnormal microglial autophagy. This leads to retinal cell safety through connexin 43 restoration.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Ácido 3-Hidroxibutírico/farmacología , Animales , Autofagia , Factor Neurotrófico Derivado del Encéfalo , Conexina 43 , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Retinopatía Diabética/complicaciones , Retinopatía Diabética/etiología , Ratones , Ratones Endogámicos C57BL , Retina
9.
Molecules ; 27(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897964

RESUMEN

Diabetic retinopathy (DR) is a neurovascular disease characterized by the reduction of retina integrity and functionality, as a consequence of retinal pigment epithelial cell fibrosis. Although galectin-1 (a glycan-binding protein) has been associated with dysregulated retinal angiogenesis, no evidence has been reported about galectin-1 roles in DR-induced fibrosis. ARPE-19 cells were cultured in normal (5 mM) or high glucose (35 mM) for 3 days, then exposed to the selective galectin-1 inhibitor OTX008 (2.5-5-10 µM) for 6 days. The determination of cell viability and ROS content along with the analysis of specific proteins (by immunocytochemistry, Western blotting, and ELISA) or mRNAs (by real time-PCR) were performed. OTX008 5 µM and 10 µM improved cell viability and markedly reduced galectin-1 protein expression in cells exposed to high glucose. This was paralleled by a down-regulation of the TGF-ß/, NF-kB p65 levels, and ROS content. Moreover, epithelial-mesenchymal transition markers were reduced by OTX008 5 µM and 10 µM. The inhibition of galectin-1 by OTX008 in DR may preserve retinal pigment epithelial cell integrity and functionality by reducing their pro-fibrotic phenotype and epithelial-mesenchymal transition phenomenon induced by diabetes.


Asunto(s)
Retinopatía Diabética , Galectina 1 , Calixarenos , Retinopatía Diabética/metabolismo , Células Epiteliales , Transición Epitelial-Mesenquimal , Fibrosis , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Fenoles , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
10.
Cardiovasc Diabetol ; 20(1): 99, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33962629

RESUMEN

RATIONALE: About 50% of hospitalized coronavirus disease 2019 (COVID-19) patients with diabetes mellitus (DM) developed myocardial damage. The mechanisms of direct SARS-CoV-2 cardiomyocyte infection include viral invasion via ACE2-Spike glycoprotein-binding. In DM patients, the impact of glycation of ACE2 on cardiomyocyte invasion by SARS-CoV-2 can be of high importance. OBJECTIVE: To evaluate the presence of SARS-CoV-2 in cardiomyocytes from heart autopsy of DM cases compared to Non-DM; to investigate the role of DM in SARS-COV-2 entry in cardiomyocytes. METHODS AND RESULTS: We evaluated consecutive autopsy cases, deceased for COVID-19, from Italy between Apr 30, 2020 and Jan 18, 2021. We evaluated SARS-CoV-2 in cardiomyocytes, expression of ACE2 (total and glycosylated form), and transmembrane protease serine protease-2 (TMPRSS2) protein. In order to study the role of diabetes on cardiomyocyte alterations, independently of COVID-19, we investigated ACE2, glycosylated ACE2, and TMPRSS2 proteins in cardiomyocytes from DM and Non-DM explanted-hearts. Finally, to investigate the effects of DM on ACE2 protein modification, an in vitro glycation study of recombinant human ACE2 (hACE2) was performed to evaluate the effects on binding to SARS-CoV-2 Spike protein. The authors included cardiac tissue from 97 autopsies. DM was diagnosed in 37 patients (38%). Fourth-seven out of 97 autopsies (48%) had SARS-CoV-2 RNA in cardiomyocytes. Thirty out of 37 DM autopsy cases (81%) and 17 out of 60 Non-DM autopsy cases (28%) had SARS-CoV-2 RNA in cardiomyocytes. Total ACE2, glycosylated ACE2, and TMPRSS2 protein expressions were higher in cardiomyocytes from autopsied and explanted hearts of DM than Non-DM. In vitro exposure of monomeric hACE2 to 120 mM glucose for 12 days led to non-enzymatic glycation of four lysine residues in the neck domain affecting the protein oligomerization. CONCLUSIONS: The upregulation of ACE2 expression (total and glycosylated forms) in DM cardiomyocytes, along with non-enzymatic glycation, could increase the susceptibility to COVID-19 infection in DM patients by favouring the cellular entry of SARS-CoV2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , COVID-19/metabolismo , Diabetes Mellitus/metabolismo , Miocitos Cardíacos/metabolismo , SARS-CoV-2/metabolismo , Anciano , Secuencia de Aminoácidos , Autopsia , COVID-19/epidemiología , COVID-19/patología , Estudios de Cohortes , Diabetes Mellitus/patología , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/patología , Unión Proteica/fisiología , Estructura Secundaria de Proteína
11.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668657

RESUMEN

Anemia, characterized by a decrease of the hemoglobin level in the blood and a reduction in carrying capacity of oxygen, is a major public health problem which affects people of all ages. The methods used to treat anemia are blood transfusion and oral administration of iron-based supplements, but these treatments are associated with a number of side effects, such as nausea, vomiting, constipation, and stomach pain, which limit its long-term use. In addition, oral iron supplements are poorly absorbed in the intestinal tract, due to overexpression of hepcidin, a peptide hormone that plays a central role in iron homeostasis. In this review, we conducted an analysis of the literature on biologically active compounds and plant extracts used in the treatment of various types of anemia. The purpose of this review is to provide up-to-date information on the use of these compounds and plant extracts, in order to explore their therapeutic potential. The advantage of using them is that they are available from natural resources and can be used as main, alternative, or adjuvant therapies in many diseases, such as various types of anemia.


Asunto(s)
Anemia/tratamiento farmacológico , Antioxidantes/uso terapéutico , Extractos Vegetales/uso terapéutico , Anemia/metabolismo , Anemia/patología , Humanos
12.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948088

RESUMEN

Chronic liver injuries lead to liver fibrosis and then to end-stage liver cirrhosis. Liver transplantation is often needed as a course of treatment for patients in critical conditions, but limitations associated with transplantation prompted the continuous search for alternative therapeutic strategies. Cell therapy with stem cells has emerged as an attractive option in order to stimulate tissue regeneration and liver repair. Transplanted mesenchymal stem cells (MSCs) could trans-differentiate into hepatocyte-like cells and, moreover, show anti-fibrotic and immunomodulatory effects. However, cell transplantation may lead to some uncontrolled side effects, risks associated with tumorigenesis, and cell rejection. MSCs' secretome includes a large number of soluble factors and extracellular vesicles (EVs), through which they exert their therapeutic role. This could represent a cell-free strategy, which is safer and more effective than MSC transplantation. In this review, we focus on cell therapies based on MSCs and how the MSCs' secretome impacts the mechanisms associated with liver diseases. Moreover, we discuss the important therapeutic role of EVs and how their properties could be further used in liver regeneration.


Asunto(s)
Cirrosis Hepática/terapia , Células Madre Mesenquimatosas/metabolismo , Secretoma , Vesículas Extracelulares , Humanos , Inmunomodulación , Regeneración Hepática , Cicatrización de Heridas
13.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668543

RESUMEN

Chrysin (CHR) is a natural flavonoid with a wide range of pharmacological activities, including hepatoprotection, but poor water solubility. By including water-soluble hydroxypropyl (HPBCD) and randomly methylated (RAMEB) ß-cyclodextrin, we aimed to increase its biodisponibility and the effectiveness of the antifibrotic effects of chrysin at oral administration. Liver fibrosis in mice was induced in 7 weeks by CCl4 i.p. administration, and afterwards treated with 50 mg/kg of CHR-HPBCD, CHR-RAMEB, and free chrysin. CCl4 administration increased hepatic inflammation (which was augmented by the upregulation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB), tumor necrosis factor (TNF)-α, and interleukin 6 (IL-6) and induced fibrosis, as determined using histopathology and electron microscopy. These results were also confirmed by the upregulation of Collagen I (Col I) and matrix metalloproteinase (MMP) expression, which led to extracellular fibrotic matrix proliferation. Moreover, the immunopositivity of alpha-smooth muscle actin (a-SMA) in the CCl4 group was evidence of hepatic stellate cell (HSC) activation. The main profibrotic pathway was activated, as confirmed by an increase in the transforming growth factor- ß1 (TGF-ß1) and Smad 2/3 expression, while Smad 7 expression was decreased. Treatment with CHR-HPBCD and CHR-RAMEB considerably reduced liver injury, attenuated inflammation, and decreased extracellular liver collagen deposits. CHR-RAMEB was determined to be the most active antifibrotic complex. We conclude that both nanocomplexes exert anti-inflammatory effects and antifibrotic effects in a considerably stronger manner than for free chrysin administration.


Asunto(s)
Flavonoides/farmacología , Cirrosis Hepática , MicroARNs/biosíntesis , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , beta-Ciclodextrinas/farmacología , Animales , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Ratones , MicroARNs/genética , FN-kappa B/genética , Transducción de Señal/genética , Proteínas Smad/genética , Factor de Crecimiento Transformador beta1/genética
14.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208040

RESUMEN

(1) Background: The pro-resolving lipid mediator Resolvin D1 (RvD1) has already shown protective effects in animal models of diabetic retinopathy. This study aimed to investigate the retinal levels of RvD1 in aged (24 months) and younger (3 months) Balb/c mice, along with the activation of macro- and microglia, apoptosis, and neuroinflammation. (2) Methods: Retinas from male and female mice were used for immunohistochemistry, immunofluorescence, transmission electron microscopy, Western blotting, and enzyme-linked immunosorbent assays. (3) Results: Endogenous retinal levels of RvD1 were reduced in aged mice. While RvD1 levels were similar in younger males and females, they were markedly decreased in aged males but less reduced in aged females. Both aged males and females showed a significant increase in retinal microglia activation compared to younger mice, with a more marked reactivity in aged males than in aged females. The same trend was shown by astrocyte activation, neuroinflammation, apoptosis, and nitrosative stress, in line with the microglia and Müller cell hypertrophy evidenced in aged retinas by electron microscopy. (4) Conclusions: Aged mice had sex-related differences in neuroinflammation and apoptosis and low retinal levels of endogenous RvD1.


Asunto(s)
Envejecimiento/patología , Ácidos Docosahexaenoicos/farmacología , Inflamación/patología , Retina/patología , Caracteres Sexuales , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Caspasa 3/metabolismo , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Células Ependimogliales/ultraestructura , Femenino , Masculino , Ratones Endogámicos BALB C , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Microglía/ultraestructura , FN-kappa B/metabolismo , Retina/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
15.
Molecules ; 26(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063044

RESUMEN

The use of biologically active compounds has become a realistic option for the treatment of malignant tumors due to their cost-effectiveness and safety. In this review, we aimed to highlight the main natural biocompounds that target leukemic cells, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their therapeutic potential in the treatment of leukemia: acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), and chronic lymphocytic leukemia (CLL). It provides a basis for researchers and hematologists in improving basic and clinical research on the development of new alternative therapies in the fight against leukemia, a harmful hematological cancer and the leading cause of death among patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Productos Biológicos/uso terapéutico , Leucemia/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Productos Biológicos/farmacología , Ensayos Clínicos como Asunto , Sinergismo Farmacológico , Humanos
16.
J Cell Mol Med ; 24(21): 12298-12307, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33058526

RESUMEN

The aim of this study was to investigate the effects of the lipid mediator Resolvin D1 in experimental keratitis. C57BL/6J mice were injected with lipopolysaccharide (2 µg/eye), and after 24 hours, the corneal damage was assessed. Clinical score was quantified, and corneal inflammatory biomarkers were detected by immunohistochemistry. A robust accumulation of sub-epithelial macrophages and polymorphonuclear leucocytes, chemokine (C-X-C motif) ligand 1 (also known as keratinocyte-derived chemokine), interleukin-10 and promoters of apoptosis was also observed in lipopolysaccharide-treated mice. Formyl peptide receptor 2 corneal expression was also assessed. The corneal stroma treated with lipopolysaccharide was characterized by presence of macrophages of M1-like subtype and immature fibroblastic cells, marked with Ki67, not fully differentiated in fibroblasts. Indeed, the staining of the cornea with anti-vimentin antibodies, a marker of differentiated myofibroblasts, was very faint. Resolvin D1 attenuated all the inflammatory parameters assessed in the present study, except for IL-10. In conclusion, the data presented here seem to be consistent with the hypothesis that Resolvin D1 protected the cornea from the lipopolysaccharide-induced keratitis by acting on several inflammatory components of this damage, pivoted by Formyl peptide receptor 2 (FPR2) activation and macrophages-leucocytes activity.


Asunto(s)
Sustancia Propia/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Inflamación/metabolismo , Queratitis/tratamiento farmacológico , Animales , Apoptosis , Conexina 43/metabolismo , Córnea/efectos de los fármacos , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Inmunohistoquímica , Interleucina-10/metabolismo , Queratitis/inducido químicamente , Queratitis/metabolismo , Antígeno Ki-67/metabolismo , Leucocitos/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Vimentina/metabolismo
17.
J Cell Physiol ; 235(5): 4256-4267, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31612492

RESUMEN

No study has investigated the interaction of Resolvin D1 (RvD1) with mitochondrial damage of retinal cells caused by diabetes. This study aims to investigate the effects of RvD1 (50 nM) on morphological and biochemical indicators of mitochondrial damage in primary retinal cells exposed to 30 mM d-glucose high glucose (HG). HG-cells exhibited photoreceptor damage characterized by short and small mitochondria with prevalent mitochondrial disruption, fragmentation, and aggregation. The cells had low mitochondrial transporters TIMM44 and TOMM40, Connexin 43, NAD/NADH ratio, and ATP levels, whereas increased cytosolic cytochrome c. Moreover, they expressed high cytosolic metalloproteinase matrix metallopeptidase 9 (MMP-9) and MMP-2 activity. HG-cells treated with RvD1 (50 nM) showed reduced reactive oxygen species levels, improved mitochondrial morphology and function, promoted mitochondrial DNA repair by OGG1, and reduced cell apoptosis and metalloproteinase activity. Therefore, RvD1 induces protection from high glucose-load to the retinal cell and promotes their survival by decreasing cytosolic MMP and mitochondrial damage.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Glucosa/toxicidad , Mitocondrias/efectos de los fármacos , Células Fotorreceptoras/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocromos c/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
Ecotoxicol Environ Saf ; 203: 110899, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32678747

RESUMEN

Liver is the earliest target for AFB1 toxicity in both human and animals. In the last decade, plant derived by-products have been used in animal feed to reduce AFB1 induced toxicity. In the present study we investigated whether the presence of 8% grape seed meal by-product is able to counteract the hepatotoxic effects produced by AFB1 in liver of pig after weaning exposed to the toxin through the contaminated feed for 28 days. Twenty four weaned cross-bred TOPIGS-40 piglets with an average body weight of 9.13±0.03 were allocated to the following experimentally treatments: control diet without AFB1 (normal compound feed for weaned pigs); contaminated diet with 320 mg kg-1 AFB1; GSM diet (compound feed plus 8% grape seed meal) and AFB1+GSM diet (320 mg kg-1 AFB1 contaminated feed plus 8% grape seed meal). Pigs fed AFB1 diet had altered performance, body weight decreasing with 25.1% (b.w.: 17.17 kg for AFB1 vs 22.92 kg for control). Exposure of piglets to AFB1 contaminated diet caused liver oxidative stress as well as liver histological damage, manly characterized by inflammatory infiltrate, fibrosis and parenchyma cells vacuolation when compared to control and GSM meal group. 94.12% of the total analysed genes (34) related to inflammation and immune response was up-regulated. The addition of GSM into the AFB1 diet diminished the gene overexpression and ameliorate histological liver injuries and oxidative stress. The protective effect of GSM diet in diminishing the AFB1 harmful effect was mediated through the decreasing of gene and protein expression of MAPKs and NF-κB signalling overexpressed by AFB1 diet. The inclusion of grape seed by-products in the diet of pigs after weaning might be used as a novel nutritional intervention to reduce aflatoxin toxicity.


Asunto(s)
Aflatoxina B1/toxicidad , Alimentación Animal/análisis , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hígado/efectos de los fármacos , Semillas/química , Vitis/química , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Dieta , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Porcinos , Destete
19.
Molecules ; 25(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228192

RESUMEN

Thuja occidentalis L. (Cupressaceae) has its origins in Eastern North America and is cultivated in Europe and Brazil as an ornamental tree, being known as the "tree of life" or "white cedar". In traditional medicine, it is commonly used to treat liver diseases, bullous bronchitis, psoriasis, enuresis, amenorrhea, cystitis, uterine carcinomas, diarrhea, and rheumatism. The chemical constituents of T. occidentalis have been of research interest for decades, due to their contents of essential oil, coumarins, flavonoids, tannins, and proanthocyanidines. Pharmacology includes antioxidant, anti-inflammatory, antibacterial, antifungal, anticancer, antiviral, protective activity of the gastrointestinal tract, radioprotection, antipyretic, and lipid metabolism regulatory activity. Therefore, the present review represents the synthesis of all the relevant information for T. occidentalis, its ethnobotany, phytochemistry, and a thorough analysis of their pharmacological activities, in order to promote all the biological activities shown so far, rather than the antitumor activity that has promoted it as a medicinal species.


Asunto(s)
Etnobotánica , Fitoquímicos/farmacología , Thuja/química , Animales , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Sustancias Protectoras/farmacología
20.
J Cell Mol Med ; 23(4): 2619-2631, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30712288

RESUMEN

Breast cancer and melanoma are among the most frequent cancer types leading to brain metastases. Despite the unquestionable clinical significance, important aspects of the development of secondary tumours of the central nervous system are largely uncharacterized, including extravasation of metastatic cells through the blood-brain barrier. By using transmission electron microscopy, here we followed interactions of cancer cells and brain endothelial cells during the adhesion, intercalation/incorporation and transendothelial migration steps. We observed that brain endothelial cells were actively involved in the initial phases of the extravasation by extending filopodia-like membrane protrusions towards the tumour cells. Melanoma cells tended to intercalate between endothelial cells and to transmigrate by utilizing the paracellular route. On the other hand, breast cancer cells were frequently incorporated into the endothelium and were able to migrate through the transcellular way from the apical to the basolateral side of brain endothelial cells. When co-culturing melanoma cells with cerebral endothelial cells, we observed N-cadherin enrichment at melanoma-melanoma and melanoma-endothelial cell borders. However, for breast cancer cells N-cadherin proved to be dispensable for the transendothelial migration both in vitro and in vivo. Our results indicate that breast cancer cells are more effective in the transcellular type of migration than melanoma cells.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Corteza Cerebral/patología , Melanoma Experimental/patología , Neoplasias Cutáneas/patología , Animales , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/metabolismo , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Femenino , Expresión Génica , Humanos , Melanocitos/metabolismo , Melanocitos/patología , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica , Trasplante de Neoplasias , Especificidad de Órganos , Cultivo Primario de Células , Neoplasias Cutáneas/irrigación sanguínea , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA