Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982678

RESUMEN

Bisphenol A (BPA) promotes colon cancer by altering the physiological functions of hormones. Quercetin (Q) can regulate signaling pathways through hormone receptors, inhibiting cancer cells. The antiproliferative effects of Q and its fermented extract (FEQ, obtained by Q gastrointestinal digestion and in vitro colonic fermentation) were analyzed in HT-29 cells exposed to BPA. Polyphenols were quantified in FEQ by HPLC and their antioxidant capacity by DPPH and ORAC. Q and 3,4-dihydroxyphenylacetic acid (DOPAC) were quantified in FEQ. Q and FEQ exhibited antioxidant capacity. Cell viability with Q+BPA and FEQ+BPA was 60% and 50%, respectively; less than 20% of dead cells were associated with the necrosis process (LDH). Treatments with Q and Q+BPA induced cell cycle arrest in the G0/G1 phase, and FEQ and FEQ+BPA in the S phase. Compared with other treatments, Q positively modulated ESR2 and GPR30 genes. Using a gene microarray of the p53 pathway, Q, Q+BPA, FEQ and FEQ+BPA positively modulated genes involved in apoptosis and cell cycle arrest; bisphenol inhibited the expression of pro-apoptotic and cell cycle repressor genes. In silico analyses demonstrated the binding affinity of Q > BPA > DOPAC molecules for ERα and ERß. Further studies are needed to understand the role of disruptors in colon cancer.


Asunto(s)
Neoplasias del Colon , Quercetina , Humanos , Quercetina/farmacología , Proliferación Celular , Antioxidantes/farmacología , Células HT29 , Ácido 3,4-Dihidroxifenilacético/farmacología , Neoplasias del Colon/tratamiento farmacológico , Compuestos de Bencidrilo/farmacología
2.
J Food Sci ; 75(6): C485-92, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20722901

RESUMEN

Xoconostle cv. Cuaresmeño (Opuntia matudae) has attracted domestic and international industry attention; however, variations of composition from xoconostle structures have not been evaluated. Industries discard the pulp (endocarp) and peel (pericarp) as wastes and utilize the skin (mesocarp), which is the edible portion. The physicochemical, nutritional, and functional characterization of structures from xoconostle pear from 3 major sites of production in Mexico were assessed. Skin yield ranged from 58% to 64% and was higher to that of peel (22% to 24%) and pulp (12% to 18%) yields. pH, degrees Brix, and acidity were similar among xoconostle structures. Total fiber showed by peel (18.23% to 20.37%) was 2-fold higher than that of skin. Protein and ether extract were higher in xoconostle pulp compared to that showed by peel and skin. Iron content of xoconostle peel (6 to 9.6 mg/100 g, DWB) was higher to that of skin and pulp and prickly pear pulp. Soluble phenols of peel (840 to 863 mg GAE/100 g, DWB) were almost similar to that of skin (919 to 986 mg GAE/100 g, dry weigh basis); meanwhile, ascorbic acid concentration of skin was 2-fold higher compared to that of peel. The phenolic fraction of xoconostle structures consisted of gallic, vanillic, and 4-hydroxybenzoic acids; catechin, epicatechin, and vanillin were also identified by high-performance liquid chromatography-didoe array detection (HPLC-DAD). Xoconostle peel showed higher antioxidant activity (TEAC) compared to that of skin (2-fold) and pulp (6-fold) of commonly consumed fruits and vegetables. The potential of xoconostle peel and pulp for the production of feed or food is promissory. Practical Application: Outstanding nutritional and functional properties of xoconostle cv. Cuaresmeño fruits are demonstrated. Increased consumption could contribute positively to improve the diet of rural and urban consumers. The high fiber, mineral, and antioxidant components of xoconostle peel and pulp suggest that these fruit structures, which are currently discarded as waste, have promissory use as feed or food by industry.


Asunto(s)
Frutas/química , Opuntia/química , Antioxidantes/análisis , Ácido Ascórbico/análisis , Betalaínas/análisis , Bebidas/análisis , Calcio de la Dieta/análisis , Cromatografía Líquida de Alta Presión , Fibras de la Dieta/análisis , Flavonoides/análisis , Industria de Procesamiento de Alimentos/economía , Frutas/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Residuos Industriales/análisis , Residuos Industriales/economía , Hierro de la Dieta/análisis , Magnesio/análisis , México , Valor Nutritivo , Fenoles/análisis , Proteínas de Plantas/análisis , Polifenoles , Potasio/análisis , Zinc/análisis
3.
Bioresour Technol ; 100(1): 434-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18614361

RESUMEN

Quebracho extracts are used in tannery due to their high concentration of phenolics. The Mexican tannery industry uses around 450 kg/m(3) of which, 150 kg/m(3) remains in wastewaters and are discharged in drain pipe systems or rivers. The quebracho phenolics recovered from tannery wastewater (QPTW) was characterized by HPLC. The antimutagenic and antioxidant activities as well as the microbiological quality were evaluated. Total phenolic content of QPTW was 621mg catechin equivalent/g sample. Gallic and protocatechuic acids were the major components characterized by HPLC. QPTW showed an inhibition range on aflatoxin B(1) mutagenicity from 16 to 60% and was dose-dependent. Antioxidant activity (defined as beta-carotene bleaching) of QPTW (64.4%) at a dose of 12.3mg/mL was similar to that of BHT (68.7%) at a dose of 0.33 mg/mL, but lower than Trolox (90.8% at a dose of 2.5mg/mL); meanwhile antiradical activity (measured as reduction of DPPH) (60.8%) was higher than that of BHT (50.8%) and Trolox (34.2%). Quebracho residues were demonstrated to be an outstanding source of phenolic acids and for research and industrial uses.


Asunto(s)
Anacardiaceae/metabolismo , Antimutagênicos/administración & dosificación , Antioxidantes/administración & dosificación , Fenoles/administración & dosificación , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Contaminantes Químicos del Agua/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Residuos Industriales/prevención & control , Mutación/efectos de los fármacos , Fenoles/química , Extractos Vegetales/administración & dosificación , Salmonella typhimurium/citología , Curtiembre , Contaminantes Químicos del Agua/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA