Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 298: 113462, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34365180

RESUMEN

Anaerobic digestion (AD) is a robust biotechnology for the valorisation of organic waste into biogas. However, the rapid decrease in renewable electricity prices requires alternative uses of biogas. In this context, the engineering of innovative platforms for the bio-production of chemicals from CH4 has recently emerged. The extremolyte and osmoprotectant ectoine, with a market price of ~1000€/Kg, is the industrial flagship of CH4-based bio-chemicals. This work aimed at optimizing the accumulation of ectoines using mixed microbial consortia enriched from saline environments (a salt lagoon and a salt river) and activated sludge, and biogas as feedstock. The influence of NaCl (0, 3, 6, 9 and 12 %) and Na2WO4 (0, 35 and 70 µg L-1) concentrations and incubation temperature (15, 25 and 35 °C) on the stoichiometry and kinetics of the methanotrophic consortia was investigated. Consortia enriched from activated sludge at 15 °C accumulated the highest yields of ectoine and hydroxyectoine at 6 % NaCl (105.0 ± 27.2 and 24.2 ± 5.4 mgextremolyte gbiomass-1, respectively). The consortia enriched from the salt lagoon accumulated the highest yield of ectoine and hydroxyectoine at 9 % NaCl (56.6 ± 2.5 and 51.0 ± 2.0 mgextremolyte gbiomass-1, respectively) at 25 °C. The supplementation of tungsten to the cultivation medium did not impact on the accumulation of ectoines in any of the consortia. A molecular characterization of the enrichments revealed a relative abundance of ectoine-accumulating methanotrophs of 7-16 %, with Methylomicrobium buryatense and Methylomicrobium japanense as the main players in the bioconversion of methane into ectoine.


Asunto(s)
Biocombustibles , Methylococcaceae , Aminoácidos Diaminos , Reactores Biológicos , Metano
2.
Water Res ; 245: 120665, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37801795

RESUMEN

Despite the potential of biogas from waste/wastewater treatment as a renewable energy source, the presence of pollutants and the rapid decrease in the levelized cost of solar and wind power constrain the use of biogas for energy generation. Biogas conversion into ectoine, one of the most valuable bioproducts (1000 €/kg), constitutes a new strategy to promote a competitive biogas market. The potential for a stand-alone 20 L bubble column bioreactor operating at 6% NaCl and two 10 L interconnected bioreactors (at 0 and 6% NaCl, respectively) for ectoine production from biogas was comparatively assessed. The stand-alone reactor supported the best process performance due to its highest robustness and efficiency for ectoine accumulation (20-52 mgectoine/gVSS) and CH4 degradation (up to 84%). The increase in N availability and internal gas recirculation did not enhance ectoine synthesis. However, a 2-fold increase in the internal gas recirculation resulted in an approximately 1.3-fold increase in CH4 removal efficiency. Finally, the recovery of ectoine through bacterial bio-milking resulted in efficiencies of >70% without any negative impact of methanotrophic cell recycling to the bioreactors on CH4 biodegradation or ectoine synthesis.


Asunto(s)
Aminoácidos Diaminos , Biocombustibles , Cloruro de Sodio , Reactores Biológicos , Metano , Anaerobiosis
3.
Bioresour Technol ; 358: 127398, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35640813

RESUMEN

The application of biogas as a low-priced substrate for the production of ectoines constitutes an opportunity to decrease their production costs and to enhance the viability of anaerobic digestion. The influence of operational conditions on CH4-biogas biodegradation and on ectoines production yields was assessed in continuous pilot bubble column bioreactors. The rise in biomass concentration from 1 to 3 g L-1 resulted in a decrease in the specific ectoine content from 42 ± 8 to 30 ± 4 mgectoine gVSS-1. The concentration of Cu2+ and Mg2+ did not impact process performance, while the use of ammonium as N source resulted in low CH4 biodegradation and ectoine yields (13 ± 7 mgectoine gVSS-1). The increase in CH4 content from 4.5 to 9 %v·v-1 enhanced CH4 removal efficiency. Process operation at NaCl concentrations of 3 %w·w-1 instead of 6 %w·w-1 decreased the ectoine yield to 17 mgectoine gVSS-1. Finally, Methylomicrobiumburyatense was identified as the dominant species.


Asunto(s)
Aminoácidos Diaminos , Biocombustibles , Aminoácidos Diaminos/química , Anaerobiosis , Biomasa , Reactores Biológicos , Metano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA