Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Immunol ; 24(11): 1839-1853, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749326

RESUMEN

The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD-astrocyte cross-talk associated with ß-amyloid (Aß) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3, compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8-transforming growth factor-ß (TGFß) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d, in mice. Deletion of Inpp5d in microglia restores MGnD-astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4-ITGB8-TGFß pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8-TGFß signaling provides a promising therapeutic intervention for AD.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Ratones , Humanos , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglía/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
2.
Hum Mol Genet ; 27(15): 2725-2738, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771310

RESUMEN

Mucolipidosis IV (MLIV) is an orphan neurodevelopmental disease that causes severe neurologic dysfunction and loss of vision. Currently there is no therapy for MLIV. It is caused by loss of function of the lysosomal channel mucolipin-1, also known as TRPML1. Knockout of the Mcoln1 gene in a mouse model mirrors clinical and neuropathologic signs in humans. Using this model, we previously observed robust activation of microglia and astrocytes in early symptomatic stages of disease. Here we investigate the consequence of mucolipin-1 loss on astrocyte inflammatory activation in vivo and in vitro and apply a pharmacologic approach to restore Mcoln1-/- astrocyte homeostasis using a clinically approved immunomodulator, fingolimod. We found that Mcoln1-/- mice over-express numerous pro-inflammatory cytokines, some of which were also over-expressed in astrocyte cultures. Changes in the cytokine profile in Mcoln1-/- astrocytes are concomitant with changes in phospho-protein signaling, including activation of PI3K/Akt and MAPK pathways. Fingolimod promotes cytokine homeostasis, down-regulates signaling within the PI3K/Akt and MAPK pathways and restores the lysosomal compartment in Mcoln1-/- astrocytes. These data suggest that fingolimod is a promising candidate for preclinical evaluation in our MLIV mouse model, which, in case of success, can be rapidly translated into clinical trial.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/patología , Encéfalo/efectos de los fármacos , Clorhidrato de Fingolimod/farmacología , Mucolipidosis/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/tratamiento farmacológico , Encefalitis/genética , Encefalitis/metabolismo , Encefalitis/patología , Femenino , Regulación de la Expresión Génica , Proteínas de Membrana de los Lisosomas/metabolismo , Masculino , Ratones Noqueados , Mucolipidosis/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
3.
Nat Neurosci ; 26(7): 1196-1207, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37291336

RESUMEN

Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer's disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Interferón gamma/metabolismo , Microglía/metabolismo , Transducción de Señal/genética , MicroARNs/genética , MicroARNs/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Placa Amiloide/metabolismo
4.
STAR Protoc ; 3(4): 101670, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36107747

RESUMEN

Numerous approaches have been developed to isolate microglia from the brain, but procedures using enzymatic dissociation at 37°C can introduce drastic transcriptomic changes and confound results from gene expression assays. Here, we present an optimized protocol for microglia isolation using mechanical homogenization. We use Dounce homogenization to homogenize mouse brain tissue into single-cell suspension. We then isolate microglia through Percoll gradient and flow cytometry. Isolated microglia exhibit a gene expression pattern without the changes induced by heated enzymatic digestion. For complete details on the use and execution of this protocol, please refer to Clayton et al. (2021).


Asunto(s)
Separación Celular , Microglía , Animales , Ratones , Encéfalo , Separación Celular/métodos , Citometría de Flujo , Transcriptoma
5.
Acta Neuropathol Commun ; 10(1): 136, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076283

RESUMEN

Single cell RNA sequencing studies identified novel neurodegeneration-associated microglial (MGnD/DAM) subtypes activated around cerebral amyloid plaques. Micro-RNA (miR)-155 of the TREM2-APOE pathway was shown to be a key transcriptional regulator of MGnD microglial phenotype. Despite growing interest in studying manifestations of Alzheimer's disease (AD) in the retina, a CNS organ accessible to noninvasive high-resolution imaging, to date MGnD microglia have not been studied in the AD retina. Here, we discovered the presence and increased populations of Clec7a+ and Galectin-3+ MGnD microglia in retinas of transgenic APPSWE/PS1L166P AD-model mice. Conditionally targeting MGnD microglia by miR-155 ablation via the tamoxifen-inducible CreERT2 system in APPSWE/PS1L166P mice diminished retinal Clec7a+ and Galectin-3+ microglial populations while increasing homeostatic P2ry12+ microglia. Retinal MGnD microglia were often adhering to microvessels; their depletion protected the inner blood-retina barrier and reduced vascular amyloidosis. Microglial miR-155 depletion further limits retinal inflammation. Mass spectrometry analysis revealed enhanced retinal PI3K-Akt signaling and predicted IL-8 and Spp1 decreases in mice with microglia-specific miR-155 knockout. Overall, this study identified MGnD microglia in APPSWE/PS1L166P mouse retina. Transcriptional regulation of these dysfunctional microglia mitigated retinal inflammation and vasculopathy. The protective effects of microglial miR-155 ablation should shed light on potential treatments for retinal inflammation and vascular damage during AD and other ocular diseases.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Galectina 3/genética , Galectina 3/metabolismo , Inflamación/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Microglía/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Receptores Inmunológicos/metabolismo
6.
Mol Neurodegener ; 16(1): 18, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33752701

RESUMEN

BACKGROUND: Recent studies suggest that microglia contribute to tau pathology progression in Alzheimer's disease. Amyloid plaque accumulation transforms microglia, the primary innate immune cells in the brain, into neurodegenerative microglia (MGnD), which exhibit enhanced phagocytosis of plaques, apoptotic neurons and dystrophic neurites containing aggregated and phosphorylated tau (p-tau). It remains unclear how microglia promote disease progression while actively phagocytosing pathological proteins, therefore ameliorating pathology. METHODS: Adeno-associated virus expressing P301L tau mutant (AAV-P301L-tau) was stereotaxically injected into the medial entorhinal cortex (MEC) in C57BL/6 (WT) and humanized APP mutant knock-in homozygote (AppNL-G-F) mice at 5 months of age. Mice were fed either chow containing a colony stimulating factor-1 receptor inhibitor (PLX5622) or control chow from 4 to 6 months of age to test the effect of microglia depletion. Animals were tested at 6 months of age for immunofluorescence, biochemistry, and FACS of microglia. In order to monitor microglial extracellular vesicle secretion in vivo, a novel lentiviral EV reporter system was engineered to express mEmerald-CD9 (mE-CD9) specifically in microglia, which was injected into the same region of MEC. RESULTS: Expressing P301L tau mutant in the MEC induced tau propagation to the granule cell layer of the hippocampal dentate gyrus, which was significantly exacerbated in AppNL-G-F mice compared to WT control mice. Administration of PLX5622 depleted nearly all microglia in mouse brains and dramatically reduced propagation of p-tau in WT and to a greater extent in AppNL-G-F mice, although it increased plaque burden and plaque-associated p-tau+ dystrophic neurites. Plaque-associated MGnD microglia strongly expressed an EV marker, tumor susceptibility gene 101, indicative of heightened synthesis of EVs. Intracortical injection of mE-CD9 lentivirus successfully induced microglia-specific expression of mE-CD9+ EV particles, which were significantly enhanced in Mac2+ MGnD microglia compared to Mac2- homeostatic microglia. Finally, consecutive intracortical injection of mE-CD9 lentivirus and AAV-P301L-tau into AppNL-G-F mice revealed encapsulation of p-tau in microglia-specific mE-CD9+ EVs as determined by super-resolution microscopy and immuno-electron microscopy. DISCUSSION: Our findings suggest that MGnD microglia hyper-secrete p-tau+ EVs while compacting Aß plaques and clearing NP tau, which we propose as a novel mechanistic link between amyloid plaque deposition and exacerbation of tau propagation in AppNL-G-F mice.


Asunto(s)
Giro Dentado/metabolismo , Corteza Entorrinal/metabolismo , Vesículas Extracelulares/metabolismo , Microglía/metabolismo , Placa Amiloide/patología , Agregación Patológica de Proteínas/etiología , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Femenino , Técnicas de Sustitución del Gen , Vectores Genéticos/administración & dosificación , Humanos , Inyecciones , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Neuritas/patología , Compuestos Orgánicos/administración & dosificación , Compuestos Orgánicos/farmacología , Mutación Puntual , Agregación Patológica de Proteínas/patología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Proteínas tau/genética
7.
Dis Model Mech ; 13(7)2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32586947

RESUMEN

Mucolipidosis type IV (MLIV) is a lysosomal disease caused by mutations in the MCOLN1 gene that encodes the endolysosomal transient receptor potential channel mucolipin-1, or TRPML1. MLIV results in developmental delay, motor and cognitive impairments, and vision loss. Brain abnormalities include thinning and malformation of the corpus callosum, white-matter abnormalities, accumulation of undegraded intracellular 'storage' material and cerebellar atrophy in older patients. Identification of the early events in the MLIV course is key to understanding the disease and deploying therapies. The Mcoln1-/- mouse model reproduces all major aspects of the human disease. We have previously reported hypomyelination in the MLIV mouse brain. Here, we investigated the onset of hypomyelination and compared oligodendrocyte maturation between the cortex/forebrain and cerebellum. We found significant delays in expression of mature oligodendrocyte markers Mag, Mbp and Mobp in the Mcoln1-/- cortex, manifesting as early as 10 days after birth and persisting later in life. Such delays were less pronounced in the cerebellum. Despite our previous finding of diminished accumulation of the ferritin-bound iron in the Mcoln1-/- brain, we report no significant changes in expression of the cytosolic iron reporters, suggesting that iron-handling deficits in MLIV occur in the lysosomes and do not involve broad iron deficiency. These data demonstrate very early deficits of oligodendrocyte maturation and critical regional differences in myelination between the forebrain and cerebellum in the mouse model of MLIV. Furthermore, they establish quantitative readouts of the MLIV impact on early brain development, useful to gauge efficacy in pre-clinical trials.


Asunto(s)
Encéfalo/metabolismo , Diferenciación Celular , Mucolipidosis/metabolismo , Oligodendroglía/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Factores de Edad , Animales , Encéfalo/patología , Cerebelo/metabolismo , Cerebelo/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Noqueados , Mucolipidosis/genética , Mucolipidosis/patología , Proteína Básica de Mielina/metabolismo , Proteínas de la Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Oligodendroglía/patología , Prosencéfalo/metabolismo , Prosencéfalo/patología , Canales de Potencial de Receptor Transitorio/genética
8.
Trends Neurosci ; 42(5): 361-372, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30926143

RESUMEN

The dynamics of CNS function rely upon omnidirectional communication among CNS cell types. Extracellular vesicles (EVs) have emerged as key mediators of this communication and are actively involved in response to CNS injury, mediating inflammatory response and inflammation-related neuroprotection as they display dual beneficial and detrimental roles. Neuroimmune interactions include communication between neurons and microglia, the resident macrophages within the CNS, and these interactions are a critical mediator of healthy brain functions, mounting an inflammatory response, and disease pathogenesis. This review aims to organize recent research highlighting the role of EVs in health and neurodegenerative disorders, with a specific focus on neuroimmune interactions between neurons and glia in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Encéfalo/inmunología , Vesículas Extracelulares/inmunología , Estado de Salud , Neuroinmunomodulación/fisiología , Neuronas/inmunología , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Microglía/inmunología , Microglía/metabolismo , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/metabolismo , Neuroglía/inmunología , Neuroglía/metabolismo , Neuronas/metabolismo
9.
Neuroscience ; 422: 65-74, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31689387

RESUMEN

Accumulation of microtubule associated protein tau in the substantia nigra is associated with several tauopathies including progressive supranuclear palsy (PSP). A number of studies have used mutant tau transgenic mouse model to mimic the neuropathology of tauopathies and disease phenotypes. However, tau expression in these transgenic mouse models is not specific to brain subregions, and may not recapitulate subcortical disease phenotypes of PSP. It is necessary to develop a new disease modeling system for cell and region-specific expression of pathogenic tau for modeling PSP in mouse brain. In this study, we developed a novel strategy to express P301L mutant tau to the dopaminergic neurons of substantia nigra by coupling tyrosine hydroxylase promoter Cre-driver mice with a Cre-inducible adeno-associated virus (iAAV). The results showed that P301L mutant tau was successfully transduced in the dopaminergic neurons of the substantia nigra at the presence of Cre recombinase and iAAV. Furthermore, the iAAV-tau-injected mice displayed severe motor deficits including impaired movement ability, motor balance, and motor coordination compared to the control groups over a short time-course. Immunochemical analysis revealed that tau gene transfer significantly resulted in loss of tyrosine hydroxylase-positive dopaminergic neurons and elevated phosphorylated tau in the substantia nigra. Our development of dopaminergic neuron-specific neurodegenerative mouse model with tauopathy will be helpful for studying the underlying mechanism of pathological protein propagation as well as development of new therapies.


Asunto(s)
Dependovirus , Trastornos Motores/fisiopatología , Degeneración Nerviosa/patología , Sustancia Negra/patología , Proteínas tau/fisiología , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Vectores Genéticos , Integrasas , Ratones Transgénicos , Trastornos Motores/genética , Mutación , Fosforilación , Sustancia Negra/metabolismo , Parálisis Supranuclear Progresiva/genética , Transducción Genética , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Proteínas tau/biosíntesis , Proteínas tau/genética , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA