Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 164(5): 1031-45, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26898330

RESUMEN

During development, sensory axons compete for limiting neurotrophic support, and local neurotrophin insufficiency triggers caspase-dependent axon degeneration. The signaling driving axon degeneration upon local deprivation is proposed to reside within axons. Our results instead support a model in which, despite the apoptotic machinery being present in axons, the cell body is an active participant in gating axonal caspase activation and axon degeneration. Loss of trophic support in axons initiates retrograde activation of a somatic pro-apoptotic pathway, which, in turn, is required for distal axon degeneration via an anterograde pro-degenerative factor. At a molecular level, the cell body is the convergence point of two signaling pathways whose integrated action drives upregulation of pro-apoptotic Puma, which, unexpectedly, is confined to the cell body. Puma then overcomes inhibition by pro-survival Bcl-xL and Bcl-w and initiates the anterograde pro-degenerative program, highlighting the role of the cell body as an arbiter of large-scale axon removal.


Asunto(s)
Axones/patología , Neuronas/patología , Transducción de Señal , Secuencia de Aminoácidos , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Axones/metabolismo , Ratones , Datos de Secuencia Molecular , Degeneración Nerviosa/patología , Neuronas/metabolismo , Proteínas/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteína bcl-X/metabolismo
2.
Cell ; 154(4): 737-47, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23953109

RESUMEN

Mitochondria have long been implicated in the pathogenesis of Parkinson's disease (PD). Mutations in the mitochondrial kinase PINK1 that reduce kinase activity are associated with mitochondrial defects and result in an autosomal-recessive form of early-onset PD. Therapeutic approaches for enhancing the activity of PINK1 have not been considered because no allosteric regulatory sites for PINK1 are known. Here, we show that an alternative strategy, a neo-substrate approach involving the ATP analog kinetin triphosphate (KTP), can be used to increase the activity of both PD-related mutant PINK1(G309D) and PINK1(WT). Moreover, we show that application of the KTP precursor kinetin to cells results in biologically significant increases in PINK1 activity, manifest as higher levels of Parkin recruitment to depolarized mitochondria, reduced mitochondrial motility in axons, and lower levels of apoptosis. Discovery of neo-substrates for kinases could provide a heretofore-unappreciated modality for regulating kinase activity.


Asunto(s)
Mitocondrias/metabolismo , Enfermedad de Parkinson/patología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Secuencia de Aminoácidos , Animales , Apoptosis , Axones/metabolismo , Línea Celular , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Cinetina/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Fosforilación , Proteínas Quinasas/química , Ratas , Alineación de Secuencia , Ubiquitina-Proteína Ligasas/metabolismo , Proteína bcl-X/metabolismo
3.
Mol Cell Proteomics ; 22(4): 100522, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863607

RESUMEN

PKC epsilon (PKCε) plays important roles in behavioral responses to alcohol and in anxiety-like behavior in rodents, making it a potential drug target for reducing alcohol consumption and anxiety. Identifying signals downstream of PKCε could reveal additional targets and strategies for interfering with PKCε signaling. We used a chemical genetic screen combined with mass spectrometry to identify direct substrates of PKCε in mouse brain and validated findings for 39 of them using peptide arrays and in vitro kinase assays. Prioritizing substrates with several public databases such as LINCS-L1000, STRING, GeneFriends, and GeneMAINA predicted interactions between these putative substrates and PKCε and identified substrates associated with alcohol-related behaviors, actions of benzodiazepines, and chronic stress. The 39 substrates could be broadly classified in three functional categories: cytoskeletal regulation, morphogenesis, and synaptic function. These results provide a list of brain PKCε substrates, many of which are novel, for future investigation to determine the role of PKCε signaling in alcohol responses, anxiety, responses to stress, and other related behaviors.


Asunto(s)
Proteína Quinasa C-epsilon , Transducción de Señal , Ratones , Animales , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Etanol , Consumo de Bebidas Alcohólicas/genética , Encéfalo/metabolismo
4.
PLoS Pathog ; 16(9): e1008927, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32997711

RESUMEN

Viruses cleave cellular proteins to remodel the host proteome. The study of these cleavages has revealed mechanisms of immune evasion, resource exploitation, and pathogenesis. However, the full extent of virus-induced proteolysis in infected cells is unknown, mainly because until recently the technology for a global view of proteolysis within cells was lacking. Here, we report the first comprehensive catalog of proteins cleaved upon enterovirus infection and identify the sites within proteins where the cleavages occur. We employed multiple strategies to confirm protein cleavages and assigned them to one of the two enteroviral proteases. Detailed characterization of one substrate, LSM14A, a p body protein with a role in antiviral immunity, showed that cleavage of this protein disrupts its antiviral function. This study yields a new depth of information about the host interface with a group of viruses that are both important biological tools and significant agents of disease.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Infecciones por Enterovirus/virología , Enterovirus/patogenicidad , Replicación Viral/fisiología , Antivirales/metabolismo , Enterovirus/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Proteolisis , Proteínas Virales/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(30): E7081-E7090, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987005

RESUMEN

The huntingtin N17 domain is a modulator of mutant huntingtin toxicity and is hypophosphorylated in Huntington's disease (HD). We conducted high-content analysis to find compounds that could restore N17 phosphorylation. One lead compound from this screen was N6-furfuryladenine (N6FFA). N6FFA was protective in HD model neurons, and N6FFA treatment of an HD mouse model corrects HD phenotypes and eliminates cortical mutant huntingtin inclusions. We show that N6FFA restores N17 phosphorylation levels by being salvaged to a triphosphate form by adenine phosphoribosyltransferase (APRT) and used as a phosphate donor by casein kinase 2 (CK2). N6FFA is a naturally occurring product of oxidative DNA damage. Phosphorylated huntingtin functionally redistributes and colocalizes with CK2, APRT, and N6FFA DNA adducts at sites of induced DNA damage. We present a model in which this natural product compound is salvaged to provide a triphosphate substrate to signal huntingtin phosphorylation via CK2 during low-ATP stress under conditions of DNA damage, with protective effects in HD model systems.


Asunto(s)
Adenina , Aductos de ADN/metabolismo , Daño del ADN , Enfermedad de Huntington/tratamiento farmacológico , Neuronas/metabolismo , Transducción de Señal/efectos de los fármacos , Adenina/análogos & derivados , Adenina/farmacocinética , Adenina/farmacología , Adenina Fosforribosiltransferasa/genética , Adenina Fosforribosiltransferasa/metabolismo , Animales , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Línea Celular Transformada , Aductos de ADN/genética , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Neuronas/patología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Transducción de Señal/genética
6.
FASEB J ; 33(12): 13131-13144, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31638431

RESUMEN

Despite the high and preferential expression of p38γ MAPK in the myocardium, little is known about its function in the heart. The aim of the current study was to elucidate the physiologic and biochemical roles of p38γ in the heart. Expression and subcellular localization of p38 isoforms was determined in mouse hearts. Comparisons of the cardiac function and structure of wild-type and p38γ knockout (KO) mice at baseline and after abdominal aortic banding demonstrated that KO mice developed less ventricular hypertrophy and that contractile function is better preserved. To identify potential substrates of p38γ, we generated an analog-sensitive mutant to affinity tag endogenous myocardial proteins. Among other proteins, this technique identified calpastatin as a direct p38γ substrate. Moreover, phosphorylation of calpastatin by p38γ impaired its ability to inhibit the protease, calpain. We have identified p38γ as an important determinant of the progression of pathologic cardiac hypertrophy after aortic banding in mice. In addition, we have identified calpastatin, among other substrates, as a novel direct target of p38γ that may contribute to the protection observed in p38γKO mice.-Loonat, A. A., Martin, E. D., Sarafraz-Shekary, N., Tilgner, K., Hertz, N. T., Levin, R., Shokat, K. M., Burlingame, A. L., Arabacilar, P., Uddin, S., Thomas, M., Marber, M. S., Clark, J. E. p38γ MAPK contributes to left ventricular remodeling after pathologic stress and disinhibits calpain through phosphorylation of calpastatin.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calpaína/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Remodelación Ventricular/fisiología , Animales , Calpaína/genética , Ecocardiografía , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Humanos , Inmunohistoquímica , Masculino , Ratones , Proteína Quinasa 12 Activada por Mitógenos/genética , Fosforilación , Isoformas de Proteínas , Espectrometría de Masas en Tándem , Remodelación Ventricular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(33): E4776-83, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27482120

RESUMEN

TGF-ß activated kinase 1 (TAK1) is a critical signaling hub responsible for translating antigen binding signals to immune receptors for the activation of the AP-1 and NF-κB master transcriptional programs. Despite its importance, known substrates of TAK1 are limited to kinases of the MAPK and IKK families and include no direct effectors of biochemical processes. Here, we identify over 200 substrates of TAK1 using a chemical genetic kinase strategy. We validate phosphorylation of the dynamic switch II region of GTPase Rab1, a mediator of endoplasmic reticulum to Golgi vesicular transport, at T75 to be regulated by TAK1 in vivo. TAK1 preferentially phosphorylates the inactive (GDP-bound) state of Rab1. Phosphorylation of Rab1 disrupts interaction with GDP dissociation inhibitor 1 (GDI1), but not guanine exchange factor (GEF) or GTPase-activating protein (GAP) enzymes, and is exclusive to membrane-localized Rab1, suggesting phosphorylation may stimulate Rab1 membrane association. Furthermore, we found phosphorylation of Rab1 at T75 to be essential for Rab1 function. Previous studies established that the pathogen Legionella pneumophila is capable of hijacking Rab1 function through posttranslational modifications of the switch II region. Here, we present evidence that Rab1 is regulated by the host in a similar fashion, and that the innate immunity kinase TAK1 and Legionella effectors compete to regulate Rab1 by switch II modifications during infection.


Asunto(s)
Interacciones Huésped-Patógeno , Legionella pneumophila/patogenicidad , Quinasas Quinasa Quinasa PAM/fisiología , Procesamiento Proteico-Postraduccional , Proteínas de Unión al GTP rab1/metabolismo , Línea Celular , Aparato de Golgi/ultraestructura , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Inmunidad Innata , Fosforilación
8.
Nature ; 472(7343): 366-9, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21441910

RESUMEN

In metazoans, the Ras-Raf-MEK (mitogen-activated protein-kinase kinase)-ERK (extracellular signal-regulated kinase) signalling pathway relays extracellular stimuli to elicit changes in cellular function and gene expression. Aberrant activation of this pathway through oncogenic mutations is responsible for a large proportion of human cancer. Kinase suppressor of Ras (KSR) functions as an essential scaffolding protein to coordinate the assembly of Raf-MEK-ERK complexes. Here we integrate structural and biochemical studies to understand how KSR promotes stimulatory Raf phosphorylation of MEK (refs 6, 7). We show, from the crystal structure of the kinase domain of human KSR2 (KSR2(KD)) in complex with rabbit MEK1, that interactions between KSR2(KD) and MEK1 are mediated by their respective activation segments and C-lobe αG helices. Analogous to BRAF (refs 8, 9), KSR2 self-associates through a side-to-side interface involving Arg 718, a residue identified in a genetic screen as a suppressor of Ras signalling. ATP is bound to the KSR2(KD) catalytic site, and we demonstrate KSR2 kinase activity towards MEK1 by in vitro assays and chemical genetics. In the KSR2(KD)-MEK1 complex, the activation segments of both kinases are mutually constrained, and KSR2 adopts an inactive conformation. BRAF allosterically stimulates the kinase activity of KSR2, which is dependent on formation of a side-to-side KSR2-BRAF heterodimer. Furthermore, KSR2-BRAF heterodimerization results in an increase of BRAF-induced MEK phosphorylation via the KSR2-mediated relay of a signal from BRAF to release the activation segment of MEK for phosphorylation. We propose that KSR interacts with a regulatory Raf molecule in cis to induce a conformational switch of MEK, facilitating MEK's phosphorylation by a separate catalytic Raf molecule in trans.


Asunto(s)
MAP Quinasa Quinasa 1/química , MAP Quinasa Quinasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica/fisiología , Animales , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Modelos Moleculares , Fosforilación , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética , Conejos , Transducción de Señal
9.
Mol Cell Proteomics ; 11(5): 47-59, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22267324

RESUMEN

To understand how the chromosomal passenger complex ensures chromosomal stability, it is crucial to identify its substrates and to find ways to specifically inhibit the enzymatic core of the complex, Aurora B. We therefore developed a chemical genetic approach to selectively inhibit human Aurora B. By mutating the gatekeeper residue Leu-154 in the kinase active site, the ATP-binding pocket was enlarged, but kinase function was severely disrupted. A unique second site suppressor mutation was identified that rescued kinase activity in the Leu-154 mutant and allowed the accommodation of bulky N(6)-substituted adenine analogs. Using this analog-sensitive Aurora B kinase, we found that retention of the chromosomal passenger complex at the centromere depends on Aurora B kinase activity. Furthermore, analog-sensitive Aurora B was able to use bulky ATPγS analogs and could thiophosphorylate multiple proteins in cell extracts. Utilizing an unbiased approach for kinase substrate mapping, we identified several novel substrates of Aurora B, including the nucleosomal-binding protein HMGN2. We confirmed that HMGN2 is a bona fide Aurora B substrate in vivo and show that its dynamic association to chromatin is controlled by Aurora B.


Asunto(s)
Proteína HMGN2/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aurora Quinasa B , Aurora Quinasas , Dominio Catalítico , Extractos Celulares/química , Línea Celular Tumoral , Centrómero , Secuencia Conservada , Difosfatos/farmacología , Histonas/metabolismo , Humanos , Leucina/genética , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo
10.
bioRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824886

RESUMEN

PINK1 loss-of-function mutations and exposure to mitochondrial toxins are causative for Parkinson's disease (PD) and Parkinsonism, respectively. We demonstrate that pathological α-synuclein deposition, the hallmark pathology of idiopathic PD, induces mitochondrial dysfunction and impairs mitophagy, driving accumulation of the PINK1 substrate pS65-Ubiquitin (pUb) in primary neurons and in vivo. We synthesized MTK458, a brain penetrant small molecule that binds to PINK1 and stabilizes an active heterocomplex, thereby increasing mitophagy. MTK458 mediates clearance of α-synuclein pathology in PFF seeding models in vitro and in vivo and reduces pUb. We developed an ultrasensitive assay to quantify pUb levels in plasma and observed an increase in pUb in PD subjects that correlates with disease progression, paralleling our observations in PD models. Our combined findings from preclinical PD models and patient biofluids suggest that pharmacological activation of PINK1 is worthy of further study as a therapeutic strategy for disease modification in PD. Highlights: Discovery of a plasma Parkinson's Disease biomarker candidate, pS65-Ubiquitin (pUb)Plasma pUb levels correlate with disease status and progression in PD patients.Identification of a potent, brain penetrant PINK1 activator, MTK458MTK458 selectively activates PINK1 by stimulating dimerization and stabilization of the PINK1/TOM complexMTK458 drives clearance of α-synuclein pathology and normalizes pUb in in vivo Parkinson's models.

11.
Elife ; 82019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042147

RESUMEN

Axon degeneration sculpts neuronal connectivity patterns during development and is an early hallmark of several adult-onset neurodegenerative disorders. Substantial progress has been made in identifying effector mechanisms driving axon fragmentation, but less is known about the upstream signaling pathways that initiate this process. Here, we investigate the behavior of the actin-spectrin-based Membrane-associated Periodic Skeleton (MPS), and effects of actin and spectrin manipulations in sensory axon degeneration. We show that trophic deprivation (TD) of mouse sensory neurons causes a rapid disassembly of the axonal MPS, which occurs prior to protein loss and independently of caspase activation. Actin destabilization initiates TD-related retrograde signaling needed for degeneration; actin stabilization prevents MPS disassembly and retrograde signaling during TD. Depletion of ßII-spectrin, a key component of the MPS, suppresses retrograde signaling and protects axons against degeneration. These data demonstrate structural plasticity of the MPS and suggest its potential role in early steps of axon degeneration.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Degeneración Nerviosa , Células Receptoras Sensoriales/metabolismo , Espectrina/metabolismo , Animales , Células Cultivadas , Ratones , Células Receptoras Sensoriales/patología , Transducción de Señal
12.
Neuron ; 103(3): 412-422.e4, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31221560

RESUMEN

Selective synaptic and axonal degeneration are critical aspects of both brain development and neurodegenerative disease. Inhibition of caspase signaling in neurons is a potential therapeutic strategy for neurodegenerative disease, but no neuron-specific modulators of caspase signaling have been described. Using a mass spectrometry approach, we discovered that RUFY3, a neuronally enriched protein, is essential for caspase-mediated degeneration of TRKA+ sensory axons in vitro and in vivo. Deletion of Rufy3 protects axons from degeneration, even in the presence of activated CASP3 that is competent to cleave endogenous substrates. Dephosphorylation of RUFY3 at residue S34 appears required for axon degeneration, providing a potential mechanism for neurons to locally control caspase-driven degeneration. Neuronally enriched RUFY3 thus provides an entry point for understanding non-apoptotic functions of CASP3 and a potential target to modulate caspase signaling specifically in neurons for neurodegenerative disease.


Asunto(s)
Axones/patología , Degeneración Nerviosa/patología , Proteínas del Tejido Nervioso/fisiología , Animales , Axones/enzimología , Caspasa 3/fisiología , Células Cultivadas , Proteínas del Citoesqueleto , Activación Enzimática , Ganglios Espinales/citología , Ganglios Espinales/embriología , Ratones , Ratones Noqueados , Degeneración Nerviosa/enzimología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Fosforilación , Procesamiento Proteico-Postraduccional , Receptor trkA/fisiología , Células Receptoras Sensoriales/fisiología , Relación Estructura-Actividad
13.
Nat Genet ; 50(4): 603-612, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29507424

RESUMEN

Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases.


Asunto(s)
Proteína C9orf72/genética , Transporte Activo de Núcleo Celular/genética , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/metabolismo , Proteína C9orf72/toxicidad , Sistemas CRISPR-Cas , Expansión de las Repeticiones de ADN , Estrés del Retículo Endoplásmico/genética , Demencia Frontotemporal/etiología , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Células K562 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Repeticiones de Microsatélite , Neuronas Motoras/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
14.
Neurochem Int ; 109: 106-116, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28434973

RESUMEN

Mutations in the mitochondrial kinase PTEN-induced putative kinase 1 (PINK1) cause Parkinson's disease (PD), likely by disrupting PINK1's kinase activity. Although the mechanism(s) underlying how this loss of activity causes degeneration remains unclear, increasing PINK1 activity may therapeutically benefit some forms of PD. However, we must first learn whether restoring PINK1 function prevents degeneration in patients harboring PINK1 mutations, or whether boosting PINK1 function can offer protection in more common causes of PD. To test these hypotheses in preclinical rodent models of PD, we used kinetin triphosphate, a small-molecule that activates both wild-type and mutant forms of PINK1, which affects mitochondrial function and protects neural cells in culture. We chronically fed kinetin, the precursor of kinetin triphosphate, to PINK1-null rats in which PINK1 was reintroduced into their midbrain, and also to rodent models overexpressing α-synuclein. The highest tolerated dose of oral kinetin increased brain levels of kinetin for up to 6 months, without adversely affecting the survival of nigrostriatal dopamine neurons. However, there was no degeneration of midbrain dopamine neurons lacking PINK1, which precluded an assessment of neuroprotection and raised questions about the robustness of the PINK1 KO rat model of PD. In two rodent models of α-synuclein-induced toxicity, boosting PINK1 activity with oral kinetin provided no protective effects. Our results suggest that oral kinetin is unlikely to protect against α-synuclein toxicity, and thus fail to provide evidence that kinetin will protect in sporadic models of PD. Kinetin may protect in cases of PINK1 deficiency, but this possibility requires a more robust PINK1 KO model that can be validated by proof-of-principle genetic correction in adult animals.


Asunto(s)
Modelos Animales de Enfermedad , Cinetina/administración & dosificación , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/deficiencia , alfa-Sinucleína/biosíntesis , Administración Oral , Animales , Células Cultivadas , Esquema de Medicación , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/prevención & control , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/prevención & control , Proteínas Quinasas/genética , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Roedores , alfa-Sinucleína/genética
15.
Cell Metab ; 22(5): 907-21, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26456332

RESUMEN

AMP-activated protein kinase (AMPK) is a central energy gauge that regulates metabolism and has been increasingly involved in non-metabolic processes and diseases. However, AMPK's direct substrates in non-metabolic contexts are largely unknown. To better understand the AMPK network, we use a chemical genetics screen coupled to a peptide capture approach in whole cells, resulting in identification of direct AMPK phosphorylation sites. Interestingly, the high-confidence AMPK substrates contain many proteins involved in cell motility, adhesion, and invasion. AMPK phosphorylation of the RHOA guanine nucleotide exchange factor NET1A inhibits extracellular matrix degradation, an early step in cell invasion. The identification of direct AMPK phosphorylation sites also facilitates large-scale prediction of AMPK substrates. We provide an AMPK motif matrix and a pipeline to predict additional AMPK substrates from quantitative phosphoproteomics datasets. As AMPK is emerging as a critical node in aging and pathological processes, our study identifies potential targets for therapeutic strategies.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adhesión Celular/genética , Proteínas Oncogénicas/genética , Mapas de Interacción de Proteínas/genética , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Animales , Movimiento Celular/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Proteínas Oncogénicas/metabolismo , Péptidos/metabolismo , Fosforilación , Análisis de la Célula Individual , Especificidad por Sustrato
16.
Elife ; 3: e03351, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25272277

RESUMEN

Cytoplasmic dynein, a microtubule-based motor protein, transports many intracellular cargos by means of its light intermediate chain (LIC). In this study, we have determined the crystal structure of the conserved LIC domain, which binds the motor heavy chain, from a thermophilic fungus. We show that the LIC has a Ras-like fold with insertions that distinguish it from Ras and other previously described G proteins. Despite having a G protein fold, the fungal LIC has lost its ability to bind nucleotide, while the human LIC1 binds GDP preferentially over GTP. We show that the LIC G domain binds the dynein heavy chain using a conserved patch of aromatic residues, whereas the less conserved C-terminal domain binds several Rab effectors involved in membrane transport. These studies provide the first structural information and insight into the evolutionary origin of the LIC as well as revealing how this critical subunit connects the dynein motor to cargo.


Asunto(s)
Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Proteínas ras/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Nucleótidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Sus scrofa , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo , Proteínas ras/metabolismo
17.
Neuron ; 84(5): 968-82, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25456499

RESUMEN

Mammalian Sterile 20 (Ste20)-like kinase 3 (MST3) is a ubiquitously expressed kinase capable of enhancing axon outgrowth. Whether and how MST3 kinase signaling might regulate development of dendritic filopodia and spine synapses is unknown. Through shRNA-mediated depletion of MST3 and kinase-dead MST3 expression in developing hippocampal cultures, we found that MST3 is necessary for proper filopodia, dendritic spine, and excitatory synapse development. Knockdown of MST3 in layer 2/3 pyramidal neurons via in utero electroporation also reduced spine density in vivo. Using chemical genetics, we discovered thirteen candidate MST3 substrates and identified the phosphorylation sites. Among the identified MST3 substrates, TAO kinases regulate dendritic filopodia and spine development, similar to MST3. Furthermore, using stable isotope labeling by amino acids in culture (SILAC), we show that phosphorylated TAO1/2 associates with Myosin Va and is necessary for its dendritic localization, thus revealing a mechanism for excitatory synapse development in the mammalian CNS.


Asunto(s)
Espinas Dendríticas/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Neuronas/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/fisiología , Factores de Edad , Animales , Células Cultivadas , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Hipocampo/citología , Humanos , Quinasas Quinasa Quinasa PAM/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Long-Evans
18.
Cancer Cell ; 26(3): 414-427, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25175806

RESUMEN

MYC proteins are major drivers of cancer yet are considered undruggable because their DNA binding domains are composed of two extended alpha helices with no apparent surfaces for small-molecule binding. Proteolytic degradation of MYCN protein is regulated in part by a kinase-independent function of Aurora A. We describe a class of inhibitors that disrupts the native conformation of Aurora A and drives the degradation of MYCN protein across MYCN-driven cancers. Comparison of cocrystal structures with structure-activity relationships across multiple inhibitors and chemotypes, coupled with mechanistic studies and biochemical assays, delineates an Aurora A conformation-specific effect on proteolytic degradation of MYCN, rather than simple nanomolar-level inhibition of Aurora A kinase activity.


Asunto(s)
Antineoplásicos/farmacología , Aurora Quinasa A/química , Neuroblastoma/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Compuestos de Fenilurea/farmacología , Pirimidinas/farmacología , Regulación Alostérica , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Área Bajo la Curva , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Modelos Moleculares , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/patología , Proteínas Nucleares/química , Proteínas Oncogénicas/química , Compuestos de Fenilurea/química , Compuestos de Fenilurea/farmacocinética , Fosforilación , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Proteolisis , Pirimidinas/química , Pirimidinas/farmacocinética , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Relación Estructura-Actividad , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Neuron ; 73(6): 1127-42, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22445341

RESUMEN

Dendrite arborization and synapse formation are essential for wiring the neural circuitry. The evolutionarily conserved NDR1/2 kinase pathway, important for polarized growth from yeast to mammals, controls dendrite growth and morphology in the worm and fly. The function of NDR1/2 in mammalian neurons and their downstream effectors were not known. Here we show that the expression of dominant negative (kinase-dead) NDR1/2 mutants or siRNA increase dendrite length and proximal branching of mammalian pyramidal neurons in cultures and in vivo, whereas the expression of constitutively active NDR1/2 has the opposite effect. Moreover, NDR1/2 contributes to dendritic spine development and excitatory synaptic function. We further employed chemical genetics and identified NDR1/2 substrates in the brain, including two proteins involved in intracellular vesicle trafficking: AAK1 (AP-2 associated kinase) and Rabin8, a GDP/GTP exchange factor (GEF) of Rab8 GTPase. We finally show that AAK1 contributes to dendrite growth regulation, and Rabin8 regulates spine development.


Asunto(s)
Dendritas/ultraestructura , Espinas Dendríticas/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neuronas/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Autoantígenos/metabolismo , Células Cultivadas , Electroporación , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Hipocampo/citología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos , Modelos Biológicos , Modelos Moleculares , Mutación/genética , Neuronas/fisiología , Técnicas de Placa-Clamp , Fosforilación/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Long-Evans , Sinapsis/genética , Sinapsis/fisiología , Transfección
20.
Curr Protoc Chem Biol ; 2(1): 15-36, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23836541

RESUMEN

Mapping kinase-substrate interactions demands robust methods to rapidly and unequivocally identify substrates from complex protein mixtures. Toward this goal, we present a method in which a kinase, engineered to utilize synthetic ATPγS analogs, specifically thiophosphorylates its substrates in a complex lysate. The thiophosphate label provides a bio-orthogonal tag that can be used to affinity purify and identify labeled proteins. Following the labeling reaction, proteins are digested with trypsin; thiol-containing peptides are then covalently captured and non-thiol-containing peptides are washed from the resin. Oxidation-promoted hydrolysis, at sites of thiophosphorylation, releases phosphopeptides for analysis by tandem mass spectrometry. By incorporating two specificity gates-kinase engineering and peptide affinity purification-this method yields high-confidence substrate identifications. This method gives both the identity of the substrates and phosphorylation-site localization. With this information, investigators can analyze the biological significance of the phosphorylation mark immediately following confirmation of the kinase-substrate relationship. Here, we provide an optimized version of this technique to further enable widespread utilization of this technology. Curr. Protoc. Chem Biol. 2:15-36. © 2010 by John Wiley & Sons, Inc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA