RESUMEN
BACKGROUND: The Andes-Amazon basin of Peru and Bolivia is one of the most data-poor, biologically rich, and rapidly changing areas of the world. Conservation scientists agree that this area hosts extremely high endemism, perhaps the highest in the world, yet we know little about the geographic distributions of these species and ecosystems within country boundaries. To address this need, we have developed conservation data on endemic biodiversity (~800 species of birds, mammals, amphibians, and plants) and terrestrial ecological systems (~90; groups of vegetation communities resulting from the action of ecological processes, substrates, and/or environmental gradients) with which we conduct a fine scale conservation prioritization across the Amazon watershed of Peru and Bolivia. We modelled the geographic distributions of 435 endemic plants and all 347 endemic vertebrate species, from existing museum and herbaria specimens at a regional conservation practitioner's scale (1:250,000-1:1,000,000), based on the best available tools and geographic data. We mapped ecological systems, endemic species concentrations, and irreplaceable areas with respect to national level protected areas. RESULTS: We found that sizes of endemic species distributions ranged widely (< 20 km2 to > 200,000 km2) across the study area. Bird and mammal endemic species richness was greatest within a narrow 2500-3000 m elevation band along the length of the Andes Mountains. Endemic amphibian richness was highest at 1000-1500 m elevation and concentrated in the southern half of the study area. Geographical distribution of plant endemism was highly taxon-dependent. Irreplaceable areas, defined as locations with the highest number of species with narrow ranges, overlapped slightly with areas of high endemism, yet generally exhibited unique patterns across the study area by species group. We found that many endemic species and ecological systems are lacking national-level protection; a third of endemic species have distributions completely outside of national protected areas. Protected areas cover only 20% of areas of high endemism and 20% of irreplaceable areas. Almost 40% of the 91 ecological systems are in serious need of protection (= < 2% of their ranges protected). CONCLUSIONS: We identify for the first time, areas of high endemic species concentrations and high irreplaceability that have only been roughly indicated in the past at the continental scale. We conclude that new complementary protected areas are needed to safeguard these endemics and ecosystems. An expansion in protected areas will be challenged by geographically isolated micro-endemics, varied endemic patterns among taxa, increasing deforestation, resource extraction, and changes in climate. Relying on pre-existing collections, publically accessible datasets and tools, this working framework is exportable to other regions plagued by incomplete conservation data.
Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Demografía , Ecosistema , Modelos Teóricos , Animales , Bolivia , Geografía , Mapas como Asunto , Perú , Especificidad de la EspecieRESUMEN
Insect macroecology and conservation biogeography studies are disproportionately scarce, especially in the Neotropics. Dung beetles are an ideal focal taxon for biodiversity research and conservation. Using distribution and body size data on the ecologically important Phanaeini, the best-known Neotropical dung beetle tribe, we determined elevational patterns of species richness, endemism, body size, and elevational range in Bolivia, specifically testing Bergmann's and Rapoport's rule. Richness of all 39 species and of 15 ecoregional endemics showed a hump-shaped pattern peaking at 400 m, but overall declined strongly with elevation up to 4000 m. The relationship between endemic and total species richness appeared to be curvilinear, providing only partial support for the null hypothesis that species-rich areas are more likely to be centers of endemism by chance alone. An elevational increase in the proportion of ecoregional endemics suggests that deterministic factors also appear to influence endemism in the Andes. When controlling for the effect of area using different species-area relationships, the statistically significant richness peak became more pronounced and shifted upslope to 750 m. Larger species did not have higher elevational mid-points, and mean body size decreased significantly with elevation, contradicting Bergmann's rule. Rapoport's rule was supported: species with higher elevational mid-points had broader elevational ranges, and mean elevational range increased significantly with elevation. The elevational decrease of phanaeine richness is in accordance with studies that demonstrated the combined influence of temperature and water availability on species diversity, but also is consistent with niche conservatism. For invertebrates, confirmation of Rapoport's and refutation of Bergmann's rule appear to be scale-invariant general patterns. Analyses of biogeographic patterns across elevational gradients can provide important insights for identifying conservation priorities. Phanaeines with narrow elevational ranges on isolated low-elevation mountains in eastern Bolivia are at greatest climate-change related extinction risk from range-shift gaps and mountaintop extinctions.
Asunto(s)
Escarabajos/clasificación , Conservación de los Recursos Naturales , Animales , Biodiversidad , Bolivia , GeografíaRESUMEN
Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures.