Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Eur J Immunol ; 53(12): e2350725, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37724048

RESUMEN

In mammals, T-cell development depends on the activity of the Foxn1 transcription factor in the thymic epithelium; mutations in the vertebrate-specific Foxn1 gene are associated with profound T-cell lymphopenia and fatal immunodeficiency. Here, we examined the extent of T-cell development in teleosts lacking a functional foxn1 gene. In zebrafish carrying a deleterious internal deletion of foxn1, reduced but robust lymphopoietic activity is maintained in the mutant thymus. Moreover, pseudogenization or loss of foxn1 in the genomes of deep-sea anglerfishes is independent of the presence or absence of the canonical signatures of the T-cell lineage. Thus, in contrast to the situation in mammals, the teleost thymus can support foxn1-independent lymphopoiesis, most likely through the activity of the Foxn4, an ancient metazoan paralog of Foxn1. Our results imply that during the early stages of vertebrate evolution, genetic control of thymopoiesis was functionally redundant and thus robust; in mammals, the genetic network was reorganized to become uniquely dependent on the FOXN1 transcription factor.


Asunto(s)
Redes Reguladoras de Genes , Pez Cebra , Ratones , Animales , Ratones Transgénicos , Pez Cebra/genética , Linfocitos T , Timo , Factores de Transcripción/genética , Factores de Transcripción Forkhead/genética , Células Epiteliales , Mamíferos/genética , Proteínas de Pez Cebra/genética
2.
Cell ; 138(1): 186-97, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19559469

RESUMEN

About 500 million years ago, a new type of adaptive immune defense emerged in basal jawed vertebrates, accompanied by morphological innovations, including the thymus. Did these evolutionary novelties arise de novo or from elaboration of ancient genetic networks? We reconstructed the genetic changes underlying thymopoiesis by comparative genome and expression analyses in chordates and basal vertebrates. The derived models of genetic networks were experimentally verified in bony fishes. Ancestral networks defining circumscribed regions of the pharyngeal epithelium of jawless vertebrates expanded in cartilaginous fishes to incorporate novel genes, notably those encoding chemokines. Correspondingly, novel networks evolved in lymphocytes of jawed vertebrates to control the expression of additional chemokine receptors. These complementary changes enabled unprecedented Delta/Notch signaling between pharyngeal epithelium and lymphoid cells that was exploited for specification to the T cell lineage. Our results provide a framework elucidating the evolution of key features of the adaptive immune system in jawed vertebrates.


Asunto(s)
Evolución Biológica , Redes Reguladoras de Genes , Timo/inmunología , Vertebrados/genética , Vertebrados/inmunología , Animales , Quimiocinas/genética , Quimiocinas/inmunología , Cordados no Vertebrados/genética , Cordados no Vertebrados/inmunología , Peces/genética , Peces/inmunología , Humanos , Lampreas/genética , Lampreas/inmunología , Linfocitos/inmunología , Datos de Secuencia Molecular , Receptores de Quimiocina/genética , Receptores de Quimiocina/inmunología
3.
Proc Natl Acad Sci U S A ; 116(52): 26759-26767, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31822609

RESUMEN

In mammals, T cell development critically depends on the IL-7 cytokine signaling pathway. Here we describe the identification of the zebrafish ortholog of mammalian IL-7 based on chromosomal localization, deduced protein sequence, and expression patterns. To examine the biological role of il7 in teleosts, we generated an il7 allele lacking most of its coding exons using CRISPR/Cas9-based mutagenesis. il7-deficient animals are viable and exhibit no obvious signs of immune disorder. With respect to intrathymic T cell development, il7 deficiency is associated with only a mild reduction of thymocyte numbers, contrasting with a more pronounced impairment of T cell development in il7r-deficient fish. Genetic interaction studies between il7 and il7r mutants, and il7 and crlf2(tslpr) mutants suggest the contribution of additional, as-yet unidentified cytokines to intrathymic T cell development. Such activities were also ascertained for other cytokines, such as il2 and il15, collectively indicating that in contrast to the situation in mammals, T cell development in the thymus of teleosts is driven by a degenerate multicomponent network of γc cytokines; this explains why deficiencies of single components have little detrimental effect. In contrast, the dependence on a single cytokine in the mammalian thymus has catastrophic consequences in cases of congenital deficiencies in genes affecting the IL-7 signaling pathway. We speculate that the transition from a degenerate to a nonredundant cytokine network supporting intrathymic T cell development emerged as a consequence of repurposing evolutionarily ancient constitutive cytokine pathways for regulatory functions in the mammalian peripheral immune system.

4.
Immunity ; 36(2): 298-309, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22342843

RESUMEN

T cell development occurs in the thymus. The thymic microenvironment attracts hematopoietic progenitors, specifies them toward the T cell lineage, and orchestrates their differentiation and egress into the periphery. The anatomical location of the thymus and the intrauterine development of mouse embryos have so far precluded a direct visualization of the initial steps of thymopoiesis. Here, we describe transgenic zebrafish lines enabling the in vivo observation of thymopoiesis. The cell-autonomous proliferation of thymic epithelial cells, their morphological transformation into a reticular meshwork upon contact with hematopoietic cells, and the multiple migration routes of thymus-settling cells could be directly visualized. The unexpectedly dynamic thymus homing process is chemokine driven and independent of blood circulation. Thymocyte development appears to be completed in less than 4 days. Our work establishes a versatile model for the in vivo observation and manipulation of thymopoiesis.


Asunto(s)
Linfopoyesis/fisiología , Linfocitos T/citología , Linfocitos T/fisiología , Timo/embriología , Animales , Animales Modificados Genéticamente , Circulación Sanguínea , Diferenciación Celular , Movimiento Celular , Microambiente Celular , Quimiotaxis de Leucocito , Células Madre Embrionarias/citología , Células Madre Embrionarias/inmunología , Epitelio/embriología , Ratones , Modelos Inmunológicos , Timo/citología , Timo/inmunología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología
5.
Proc Natl Acad Sci U S A ; 110(11): 4327-32, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23431192

RESUMEN

Recent work on vertebrate hematopoiesis has uncovered the presence of deeply rooted similarities between fish and mammals at molecular and cellular levels. Although small animal models such as zebrafish are ideally suited for genetic and chemical screens, the study of cellular aspects of hematopoietic development in lower vertebrates is severely hampered by the complex nature of their histocompatibility-determining genes. Hence, even when hosts are sublethally irradiated before hematopoietic cell transplantation, stable and long-term reconstitution by allogeneic stem cells often fails. Here, we describe the unexpected observation that transplantation and maintenance of allogeneic hematopoietic stem cells in zebrafish homozygous for the c-myb(t25127) allele, carrying a missense mutation (Ile181Asn) in the DNA binding domain can be achieved without prior conditioning. Using this model, we examined several critical parameters of zebrafish hematopoiesis in a near-physiological setting. Limiting dilution analysis suggests that the kidney marrow of adult zebrafish harbors about 10 transplantable hematopoietic stem cells; this tissue also contains thymus-settling precursors that colonize the thymic rudiment within days after transplantation and initiate robust T-cell development. We also demonstrate that c-myb mutants can be stably reconstituted with hematopoietic cells carrying specific genetic defects in lymphocyte development, exemplifying one of the many potential uses of this model in experimental hematology.


Asunto(s)
Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Modelos Biológicos , Pez Cebra/metabolismo , Sustitución de Aminoácidos , Animales , Humanos , Mutación Missense , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Trasplante Homólogo , Pez Cebra/genética , Proteínas de Pez Cebra
6.
Annu Rev Genomics Hum Genet ; 13: 127-49, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22703179

RESUMEN

The evolutionary emergence of vertebrates was accompanied by the invention of adaptive immunity. This is characterized by extraordinarily diverse repertoires of somatically assembled antigen receptors and the facility of antigen-specific memory, leading to more rapid and efficient secondary immune responses. Adaptive immunity emerged twice during early vertebrate evolution, once in the lineage leading to jawless fishes (such as lamprey and hagfish) and, independently, in the lineage leading to jawed vertebrates (comprising the overwhelming majority of extant vertebrates, from cartilaginous fishes to mammals). Recent findings on the immune systems of jawless and jawed fishes (here referred to as lower vertebrates) impact on the identification of general principles governing the structure and function of adaptive immunity and its coevolution with innate defenses. The discovery of conserved features of adaptive immunity will guide attempts to generate synthetic immunological functionalities and thus provide new avenues for intervening with faulty immune functions in humans.


Asunto(s)
Inmunidad Adaptativa/genética , Sistema Inmunológico/fisiología , Síndromes de Inmunodeficiencia/veterinaria , Animales , Evolución Molecular , Enfermedades de los Peces/genética , Peces/genética , Peces/inmunología , Humanos , Sistema Inmunológico/citología , Síndromes de Inmunodeficiencia/genética , Tejido Linfoide/citología , Tejido Linfoide/inmunología , Tejido Linfoide/fisiología , Filogenia
7.
Trends Immunol ; 33(6): 315-21, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22483556

RESUMEN

Lymphoid organs are integral parts of all vertebrate adaptive immune systems. Primary lymphoid tissues exhibit a remarkable functional dichotomy: T cells develop in specialized thymopoietic tissues located in the pharynx, whereas B cells develop in distinct areas of general hematopoietic areas, such as the kidney or bone marrow. Among secondary lymphoid tissues, the spleen is present in all vertebrates, whereas lymph nodes represent an innovation particular to mammals and some birds. A comparative analysis of anatomical, functional and genomic features thus reveals the core components of adaptive immune systems. Such information has guided recent attempts at reconstructing lymphopoietic functions in vivo and in the future might inspire the development of new strategies for medical interventions restoring and modulating immune functions.


Asunto(s)
Evolución Biológica , Tejido Linfoide/inmunología , Inmunidad Adaptativa , Animales , Diferenciación Celular , Humanos , Tejido Linfoide/citología , Linfocitos T/citología , Linfocitos T/inmunología
8.
J Immunol ; 186(12): 7060-6, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21562163

RESUMEN

In mammals, the cytokine IL-7 is a key regulator of various aspects of lymphocyte differentiation and homeostasis. Because of the difficulty of identifying cytokine homologs in lower vertebrates and the paucity of assay systems and reagents, the degree of functional conservation of cytokine signaling pathways, particularly those pertaining to lymphocyte development, is unclear. In this article, we report on the analysis and characterization of three zebrafish mutants with severely impaired thymopoiesis. The identification of affected genes by positional cloning revealed components of the IL-7 signaling pathway. A presumptive null allele of the zebrafish homolog of the IL-7Rα-chain causes substantially reduced cellularity of the thymus but spares B cell development in the kidney. Likewise, nonsense mutations in the zebrafish homologs of janus kinases JAK1 and JAK3 preferentially affect T cell development. The functional interactions of the cytokine receptor components were examined in the three groups of fish hetero- or homozygous for either il7r and jak1, il7r and jak3, or jak1 and jak3 mutations. The differential effects on T cell development arising from the different genotypes could be explained on the basis of the known structure of the mammalian IL-7R complex. Because IL-7 signaling appears to be a universal requirement for T cell development in vertebrates, the mutants described in this article represent alternative animal models of human immunodeficiency syndromes amenable to large-scale genetic and chemical screens.


Asunto(s)
Evolución Molecular , Receptores de Interleucina-7/genética , Transducción de Señal/inmunología , Linfocitos T/citología , Pez Cebra/inmunología , Animales , Interleucina-7/fisiología , Mutación , Especificidad de Órganos , Linfocitos T/inmunología , Timo/citología , Timo/crecimiento & desarrollo
9.
Proc Natl Acad Sci U S A ; 107(40): 17304-8, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20823231

RESUMEN

The transcription factor c-myb has emerged as one of the key regulators of vertebrate hematopoiesis. In mice, it is dispensable for primitive stages of blood cell development but essentially required for definitive hematopoiesis. Using a conditional knock-out strategy, recent studies have indicated that c-myb is required for self-renewal of mouse hematopoietic stem cells. Here, we describe and characterize the c-myb mutant in a lower vertebrate, the zebrafish Danio rerio. The recessive loss-of-function allele of c-myb (c-myb(t25127)) was identified in a collection of N-ethyl-N-nitrosourea (ENU)-induced mutants exhibiting a failure of thymopoiesis. The sequence of the mutant allele predicts a missense mutation (I181N) in the middle of the DNA recognition helix of repeat 3 of the highly conserved DNA binding domain. In keeping with the findings in the mouse, primitive hematopoiesis is not affected in the c-myb mutant fish. By contrast, definitive hematopoiesis fails, resulting in the loss of all blood cells by day 20 of development. Thus, the mutant fish lack lymphocytes and other white and red blood cells; nonetheless, they survive for 2-3 mo but show stunted growth. Because the mutant fish survive into early adulthood, it was possible to directly show that their definitive hematopoiesis is permanently extinguished. Our results, therefore, suggest that the key role of c-myb in definitive hematopoiesis is similar to that in mammals and must have become established early in vertebrate evolution.


Asunto(s)
Evolución Biológica , Hematopoyesis/fisiología , Proteínas Proto-Oncogénicas c-myb/metabolismo , Pez Cebra , Animales , Animales Modificados Genéticamente , Células Madre Hematopoyéticas/fisiología , Hibridación in Situ , Ratones , Datos de Secuencia Molecular , Mutación , Fenotipo , Conformación Proteica , Proteínas Proto-Oncogénicas c-myb/química , Proteínas Proto-Oncogénicas c-myb/genética , Timo/anatomía & histología , Timo/fisiología , Pez Cebra/anatomía & histología , Pez Cebra/genética , Pez Cebra/fisiología
10.
Proc Natl Acad Sci U S A ; 107(38): 16613-8, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20823228

RESUMEN

The thymus is essential for T-cell development. Here, we focus on the role of the transcription factor Foxn1 in the development and function of thymic epithelial cells (TECs) of the mouse. TECs are of endodermal origin; they initially express Foxn1 and give rise to orthotopic (thoracic) and additional (cervical) thymi. Using Foxn1-directed cytoablation, we show that during embryogenesis, cervical thymi develop a few days after the thoracic lobes, and that bipotent epithelial progenitors of cortical and medullary compartments express Foxn1. We also show that following acute selective near-total ablation during embryogenesis, complete regeneration of TECs does not occur, providing an animal model for human thymic aplasia syndromes. Finally, we address the functional role of Foxn1-negative TECs that arise postnatally in the mouse. Lineage tracing shows that such Foxn1-negative TECs are descendants of Foxn1-positive progenitors; furthermore, Foxn1-directed subacute intoxication of TECs by polyglutamine-containing EGFP proteins indicates that a presumptive Foxn1-independent lineage does not contribute to thymopoietic function of the adult thymus. Our findings therefore support the notion that Foxn1 is the essential transcription factor regulating the differentiation of TECs and that its expression marks the major functional lineage of TECs in embryonic and adult thymic tissue.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Linfopoyesis/fisiología , Timo/embriología , Animales , Secuencia de Bases , Cartilla de ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Linfopoyesis/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Embarazo , Timo/anomalías , Timo/citología , Timo/metabolismo
11.
Sci Rep ; 12(1): 21401, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496511

RESUMEN

The zinc finger transcription factor Ikaros1 (Ikzf1) is required for lymphoid development in mammals. Four zinc fingers constitute its DNA binding domain and two zinc fingers are present in the C-terminal protein interaction module. We describe the phenotypes of zebrafish homozygous for two distinct mutant ikzf1 alleles. The IT325 variant lacks the C-terminal two zinc fingers, whereas the fr105 variant retains only the first zinc finger of the DNA binding domain. An intact ikzf1 gene is required for larval T cell development, whereas low levels of adult lymphoid development recover in the mutants. By contrast, the mutants exhibit a signature of increased myelopoiesis at larval and adult stages. Both mutations stimulate erythroid differentiation in larvae, indicating that the C-terminal zinc fingers negatively regulate the extent of red blood cell production. An unexpected differential effect of the two mutants on adult erythropoiesis suggests a direct requirement of an intact DNA binding domain for entry of progenitors into the red blood cell lineage. Collectively, our results reinforce the biological differences between larval and adult haematopoiesis, indicate a stage-specific function of ikzf1 in regulating the hierarchical bifurcations of differentiation, and assign distinct functions to the DNA binding domain and the C-terminal zinc fingers.


Asunto(s)
Factores de Transcripción , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc/genética , Diferenciación Celular/genética , Eritropoyesis/genética , ADN/metabolismo , Mamíferos/metabolismo
12.
Eur J Immunol ; 40(9): 2379-84, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20623552

RESUMEN

All organisms possess at least one type IA DNA topoisomerase. These topoisomerases function as part of a DNA structure-specific "dissolvasome," also known as the RTR complex, which has critical functions in faithful DNA replication, recombination, and chromosome segregation. In humans, the heteromeric RTR complex consists of RMI1, RMI2, the Bloom's syndrome gene product (BLM), and topoisomerase 3A (TOP3A) proteins. Here, we describe the identification and characterization of two deleterious mutations in the zebrafish top3a gene that reveal an unexpected tissue-specific requirement of top3a function in developing thymocytes. Deficiency in top3a activates a p53-dependent check-point but does not affect VDJ recombination. Our results suggest that TOP3A could be a candidate gene involved in human primary immunodeficiency syndromes.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Homeodominio/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Linfocitos T CD4-Positivos , Diferenciación Celular/genética , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/inmunología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Humanos , Hibridación in Situ , Modelos Moleculares , Unión Proteica , Alineación de Secuencia , Eliminación de Secuencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/inmunología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología
13.
Dev Biol ; 318(2): 366-77, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18455719

RESUMEN

The cis-regulatory regions of many developmental regulators and transcription factors are believed to be highly conserved in the genomes of vertebrate species, suggesting specific regulatory mechanisms for these gene classes. We functionally characterized five notochord enhancers, whose sequence is highly conserved, and systematically mutated two of them. Two subregions were identified to be essential for expression in the notochord of the zebrafish embryo. Synthetic enhancers containing the two essential regions in front of a TATA-box drive expression in the notochord while concatemerization of the subregions alone is not sufficient, indicating that the combination of the two sequence elements is required for notochord expression. Both regions are present in the five functionally characterized notochord enhancers. However, the position, the distance and relative orientation of the two sequence motifs can vary substantially within the enhancer sequences. This suggests that the regulatory grammar itself does not dictate the high evolutionary conservation between these orthologous cis-regulatory sequences. Rather, it represents a less well-conserved layer of sequence organization within these sequences.


Asunto(s)
Notocorda/metabolismo , Elementos Reguladores de la Transcripción , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Secuencia Conservada , Análisis Mutacional de ADN , Elementos de Facilitación Genéticos , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Humanos , Regiones Promotoras Genéticas , Factor de Transcripción SOX9 , Alineación de Secuencia , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
J Exp Med ; 215(2): 595-610, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29343500

RESUMEN

Multipotent hematopoietic progenitors must acquire thymus-homing capacity to initiate T lymphocyte development. Despite its importance, the transcriptional program underlying this process remains elusive. Cbfß forms transcription factor complexes with Runx proteins, and here we show that Cbfß2, encoded by an RNA splice variant of the Cbfb gene, is essential for extrathymic differentiation of T cell progenitors. Furthermore, Cbfß2 endows extrathymic progenitors with thymus-homing capacity by inducing expression of the principal thymus-homing receptor, Ccr9. This occurs via direct binding of Cbfß2 to cell type-specific enhancers, as is observed in Rorγt induction during differentiation of lymphoid tissue inducer cells by activation of an intronic enhancer. As in mice, an alternative splicing event in zebrafish generates a Cbfß2-specific mRNA, important for ccr9 expression. Thus, despite phylogenetically and ontogenetically variable sites of origin of T cell progenitors, their robust thymus-homing capacity is ensured by an evolutionarily conserved mechanism emerging from functional diversification of Runx transcription factor complexes by acquisition of a novel splice variant.


Asunto(s)
Subunidad beta del Factor de Unión al Sitio Principal/genética , Subunidad beta del Factor de Unión al Sitio Principal/inmunología , Células Precursoras de Linfocitos T/citología , Células Precursoras de Linfocitos T/inmunología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología , Empalme Alternativo , Animales , Diferenciación Celular , Linaje de la Célula , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/deficiencia , Elementos de Facilitación Genéticos , Evolución Molecular , Técnicas de Silenciamiento del Gen , Ratones , Ratones Noqueados , Ratones Mutantes , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , ARN Mensajero/genética , Receptores CCR/genética , Receptores CCR/inmunología , Especificidad de la Especie , Timo/citología , Timo/embriología , Timo/inmunología , Pez Cebra , Proteínas de Pez Cebra/deficiencia
15.
Nat Commun ; 9(1): 3660, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30202007

RESUMEN

Kidney injury is a common complication of severe disease. Here, we report that injuries of the zebrafish embryonal kidney are rapidly repaired by a migratory response in 2-, but not in 1-day-old embryos. Gene expression profiles between these two developmental stages identify cxcl12a and myca as candidates involved in the repair process. Zebrafish embryos with cxcl12a, cxcr4b, or myca deficiency display repair abnormalities, confirming their role in response to injury. In mice with a kidney-specific knockout, Cxcl12 and Myc gene deletions suppress mitochondrial metabolism and glycolysis, and delay the recovery after ischemia/reperfusion injury. Probing these observations in zebrafish reveal that inhibition of glycolysis slows fast migrating cells and delays the repair after injury, but does not affect the slow cell movements during kidney development. Our findings demonstrate that Cxcl12 and Myc facilitate glycolysis to promote fast migratory responses during development and repair, and potentially also during tumor invasion and metastasis.


Asunto(s)
Quimiocina CXCL12/metabolismo , Regulación del Desarrollo de la Expresión Génica , Enfermedades Renales/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Movimiento Celular , Metabolismo Energético , Eliminación de Gen , Perfilación de la Expresión Génica , Glucólisis , Homeostasis , Riñón/lesiones , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Tretinoina/química
16.
Sci Rep ; 6: 19634, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26777855

RESUMEN

Bony fishes are the most numerous and phenotypically diverse group of vertebrates inhabiting our planet, making them an ideal target for identifying general principles of tissue development and function. However, lack of suitable experimental platforms prevents the exploitation of this rich source of natural phenotypic variation. Here, we use a zebrafish strain lacking definitive hematopoiesis for interspecific analysis of hematopoietic cell development. Without conditioning prior to transplantation, hematopoietic progenitor cells from goldfish stably engraft in adult zebrafish homozygous for the c-myb(I181N) mutation. However, in competitive repopulation experiments, zebrafish hematopoietic cells exhibit an advantage over their goldfish counterparts, possibly owing to subtle species-specific functional differences in hematopoietic microenvironments resulting from over 100 million years of independent evolution. Thus, our unique animal model provides an unprecedented opportunity to genetically and functionally disentangle universal and species-specific contributions of the microenvironment to hematopoietic progenitor cell maintenance and development.


Asunto(s)
Hematopoyesis/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Diferenciación Celular , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Xenoinjertos , Mutación , Proteínas Proto-Oncogénicas c-myc/genética
17.
Cell Rep ; 17(9): 2259-2270, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27880902

RESUMEN

Lymphocytes represent basic components of vertebrate adaptive immune systems, suggesting the utility of non-mammalian models to define the molecular basis of their development and differentiation. Our forward genetic screens in zebrafish for recessive mutations affecting early T cell development revealed several major genetic pathways. The identification of lineage-specific transcription factors and specific components of cytokine signaling and DNA replication and/or repair pathways known from studies of immunocompromised mammals provided an evolutionary cross-validation of the screen design. Unexpectedly, however, genes encoding proteins required for pre-mRNA processing were enriched in the collection of mutants identified here. In both zebrafish and mice, deficiency of the splice regulator TNPO3 impairs intrathymic T cell differentiation, illustrating the evolutionarily conserved and cell-type-specific functions of certain pre-mRNA-processing factors for T cell development.


Asunto(s)
Pruebas Genéticas , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN/genética , Linfocitos T/citología , Linfocitos T/metabolismo , Pez Cebra/genética , Empalme Alternativo/genética , Animales , Epistasis Genética , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Especificidad de Órganos/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Transcriptoma/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , beta Carioferinas/deficiencia , beta Carioferinas/metabolismo
18.
Cell Rep ; 8(4): 1184-97, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25131198

RESUMEN

The thymus is a lymphoid organ unique to vertebrates, and it provides a unique microenvironment that facilitates the differentiation of immature hematopoietic precursors into mature T cells. We subjected the evolutionary trajectory of the thymic microenvironment to experimental analysis. A hypothetical primordial form of the thymus was established in mice by replacing FOXN1, the vertebrate-specific master regulator of thymic epithelial cell function, with its metazoan ancestor, FOXN4, thereby resetting the regulatory and coding changes that have occurred since the divergence of these two paralogs. FOXN4 exhibited substantial thymopoietic activity. Unexpectedly, histological changes and a functional imbalance between the lymphopoietic cytokine IL7 and the T cell specification factor DLL4 within the reconstructed thymus resulted in coincident but spatially segregated T and B cell development. Our results identify an evolutionary mechanism underlying the conversion of a general lymphopoietic organ to a site of exclusive T cell generation.


Asunto(s)
Proteínas del Ojo/genética , Factores de Transcripción Forkhead/genética , Timo/metabolismo , Animales , Linfocitos B/fisiología , Células Cultivadas , Células Epiteliales/metabolismo , Proteínas del Ojo/metabolismo , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Ingeniería Genética , Hematopoyesis Extramedular , Tejido Linfoide , Linfopoyesis , Ratones , Ratones Transgénicos , Oryzias , Filogenia , Linfocitos T/fisiología , Timo/citología , Pez Cebra
19.
Nat Genet ; 41(1): 101-5, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19043417

RESUMEN

Human severe combined immunodeficiencies (SCID) are phenotypically and genotypically heterogeneous diseases. Reticular dysgenesis is the most severe form of inborn SCID. It is characterized by absence of granulocytes and almost complete deficiency of lymphocytes in peripheral blood, hypoplasia of the thymus and secondary lymphoid organs, and lack of innate and adaptive humoral and cellular immune functions, leading to fatal septicemia within days after birth. In bone marrow of individuals with reticular dysgenesis, myeloid differentiation is blocked at the promyelocytic stage, whereas erythro- and megakaryocytic maturation is generally normal. These features exclude a defect in hematopoietic stem cells but point to a unique aberration of the myelo-lymphoid lineages. The dramatic clinical course of reticular dysgenesis and its unique hematological phenotype have spurred interest in the unknown genetic basis of this syndrome. Here we show that the gene encoding the mitochondrial energy metabolism enzyme adenylate kinase 2 (AK2) is mutated in individuals with reticular dysgenesis. Knockdown of zebrafish ak2 also leads to aberrant leukocyte development, stressing the evolutionarily conserved role of AK2. Our results provide in vivo evidence for AK2 selectivity in leukocyte differentiation. These observations suggest that reticular dysgenesis is the first example of a human immunodeficiency syndrome that is causally linked to energy metabolism and that can therefore be classified as a mitochondriopathy.


Asunto(s)
Adenilato Quinasa/genética , Isoenzimas/genética , Mitocondrias/enzimología , Mutación/genética , Inmunodeficiencia Combinada Grave/enzimología , Inmunodeficiencia Combinada Grave/genética , Pez Cebra/genética , Adenilato Quinasa/metabolismo , Animales , Apoptosis , Células de la Médula Ósea/enzimología , Células de la Médula Ósea/patología , Línea Celular , Embrión no Mamífero/enzimología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación Enzimológica de la Expresión Génica , Humanos , Isoenzimas/metabolismo , Leucocitos Mononucleares/enzimología , Leucocitos Mononucleares/patología , Masculino , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA