Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Evol Appl ; 17(2): e13635, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343778

RESUMEN

Age at sexual maturity is a key life history trait that can be used to predict population growth rates and develop life history models. In many wild animal species, the age at sexual maturity is not accurately quantified. This results in a reduced ability to accurately model demography of wild populations. Recent studies have indicated the potential for CpG density within gene promoters to be predictive of other life history traits, specifically maximum lifespan. Here, we have developed a machine learning model using gene promoter CpG density to predict the mean age at sexual maturity in mammalian species. In total, 91 genomes were used to identify 101 unique gene promoters predictive of age at sexual maturity across males and females. We found these gene promoters to be most predictive of age at sexual maturity in females (R 2 = 0.881) compared to males (R 2 = 0.758). The median absolute error rate was also found to be lower in females (0.427 years) compared to males (0.785 years). This model provides a novel method for species-level age at sexual maturity prediction without the need for long-term monitoring. This study also highlights a potential epigenetic mechanism for the onset of sexual maturity, indicating the possibility of using epigenetic biomarkers for this important life history trait.

2.
Sci Total Environ ; 873: 162322, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801404

RESUMEN

Environmental DNA (eDNA) is the fastest growing biomonitoring tool fuelled by two key features: time efficiency and sensitivity. Technological advancements allow rapid biodiversity detection at both species and community levels with increasing accuracy. Concurrently, there has been a global demand to standardise eDNA methods, but this is only possible with an in-depth overview of the technological advancements and a discussion of the pros and cons of available methods. We therefore conducted a systematic literature review of 407 peer-reviewed papers on aquatic eDNA published between 2012 and 2021. We observed a gradual increase in the annual number of publications from four (2012) to 28 (2018), followed by a rapid growth to 124 publications in 2021. This was mirrored by a tremendous diversification of methods in all aspects of the eDNA workflow. For example, in 2012 only freezing was applied to preserve filter samples, whereas we recorded 12 different preservation methods in the 2021 literature. Despite an ongoing standardisation debate in the eDNA community, the field is seemingly moving fast in the opposite direction and we discuss the reasons and implications. Moreover, by compiling the largest PCR-primer database to date, we provide information on 522 and 141 published species-specific and metabarcoding primers targeting a wide range of aquatic organisms. This works as a user-friendly 'distillation' of primer information that was hitherto scattered across hundreds of papers, but the list also reflects which taxa are commonly studied with eDNA technology in aquatic environments such as fish and amphibians, and reveals that groups such as corals, plankton and algae are under-studied. Efforts to improve sampling and extraction methods, primer specificity and reference databases are crucial to capture these ecologically important taxa in future eDNA biomonitoring surveys. In a rapidly diversifying field, this review synthetises aquatic eDNA procedures and can guide eDNA users towards best practice.


Asunto(s)
ADN Ambiental , Animales , Monitoreo Biológico , Código de Barras del ADN Taxonómico , Monitoreo del Ambiente/métodos , Biodiversidad , Peces
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA