Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Immunity ; 56(6): 1220-1238.e7, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37130522

RESUMEN

Early-life immune development is critical to long-term host health. However, the mechanisms that determine the pace of postnatal immune maturation are not fully resolved. Here, we analyzed mononuclear phagocytes (MNPs) in small intestinal Peyer's patches (PPs), the primary inductive site of intestinal immunity. Conventional type 1 and 2 dendritic cells (cDC1 and cDC2) and RORgt+ antigen-presenting cells (RORgt+ APC) exhibited significant age-dependent changes in subset composition, tissue distribution, and reduced cell maturation, subsequently resulting in a lack in CD4+ T cell priming during the postnatal period. Microbial cues contributed but could not fully explain the discrepancies in MNP maturation. Type I interferon (IFN) accelerated MNP maturation but IFN signaling did not represent the physiological stimulus. Instead, follicle-associated epithelium (FAE) M cell differentiation was required and sufficient to drive postweaning PP MNP maturation. Together, our results highlight the role of FAE M cell differentiation and MNP maturation in postnatal immune development.


Asunto(s)
Células M , Ganglios Linfáticos Agregados , Intestinos , Intestino Delgado , Diferenciación Celular , Mucosa Intestinal
2.
Hepatology ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231043

RESUMEN

BACKGROUND AND AIMS: Acute liver failure (ALF) is a rare but life-threatening condition, and DILI, particularly acetaminophen toxicity, is the leading cause of ALF. Innate immune mechanisms further perpetuate liver injury, while the role of the adaptive immune system in DILI-related ALF is unclear. APPROACH AND RESULTS: We analyzed liver tissue from 2 independent patient cohorts with ALF and identified hepatic T cell infiltration as a prominent feature in human ALF. CD8 + T cells were characterized by zonation toward necrotic regions and an activated gene expression signature. In murine acetaminophen-induced liver injury, intravital microscopy revealed zonation of CD8 + but not CD4 + T cells at necrotic areas. Gene expression analysis exposed upregulated C-C chemokine receptor 7 (CCR7) and its ligand CCL21 in the liver as well as a broadly activated phenotype of hepatic CD8 + T cells. In 2 mouse models of ALF, Ccr7-/- mice had significantly aggravated early-phase liver damage. Functionally, CCR7 was not involved in the recruitment of CD8 + T cells, but regulated their activation profile potentially through egress to lymphatics. Ccr7-/- CD8 + T cells were characterized by elevated expression of activation, effector, and exhaustion profiles. Adoptive transfer revealed preferential homing of CCR7-deficient CD8 + T cells to the liver, and depletion of CD8 + T cells attenuated liver damage in mice. CONCLUSIONS: Our study demonstrates the involvement of the adaptive immune system in ALF in humans and mice. We identify the CCR7-CCL21 axis as an important regulatory pathway, providing downstream protection against T cell-mediated liver injury.

3.
Gut ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777574

RESUMEN

Inflammation is a critical component of most acute and chronic liver diseases. The liver is a unique immunological organ with a dense vascular network, leading to intense crosstalk between tissue-resident immune cells, passenger leucocytes and parenchymal cells. During acute and chronic liver diseases, the multifaceted immune response is involved in disease promoting and repair mechanisms, while upholding core liver immune functions. In recent years, single-cell technologies have unravelled a previously unknown heterogeneity of immune cells, reshaping the complexity of the hepatic immune response. However, inflammation is a dynamic biological process, encompassing various immune cells, orchestrated in temporal and spatial dimensions, and driven by multiorgan signals. Intravital microscopy (IVM) has emerged as a powerful tool to investigate immunity by visualising the dynamic interplay between different immune cells and their surroundings within a near-natural environment. In this review, we summarise the experimental considerations to perform IVM and highlight recent technological developments. Furthermore, we outline the unique contributions of IVM to our understanding of liver immunity. Through the lens of liver disease, we discuss novel immune-mediated disease mechanisms uncovered by imaging-based studies.

4.
Hepatology ; 78(1): 150-166, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36630995

RESUMEN

BACKGROUND AND AIMS: The progression of chronic liver diseases towards liver cirrhosis is accompanied by drastic tissue changes. This study combines elaborate transcriptomic and histological methods aiming at spatially resolving the hepatic immune microenvironment in NAFLD (including NASH, primary sclerosing cholangitis, primary biliary cholangitis, and severe alcoholic hepatitis). APPROACH AND RESULTS: Human liver samples were subjected to RNA-sequencing (n=225) and imaging cytometry (n=99) across 3 independent patient cohorts. Liver samples from alcoholic hepatitis and primary biliary cholangitis patients were used for comparison. Myeloid populations were further characterized in corresponding mouse models. Imaging, clinical, and phenotypical data were combined for multidimensional analysis. NAFLD/NASH and primary sclerosing cholangitis disease stages were associated with loss of parenchymal areas, increased ductular cell accumulation, and infiltration of immune cells. NASH patients predominantly exhibited myeloid cell accumulation, whereas primary sclerosing cholangitis patients additionally had pronounced lymphoid cell responses. Correlating to disease stage, both etiologies displayed intense IBA1 + CD16 low CD163 low macrophage aggregation in nonparenchymal areas, with a distinct spatial proximity to ductular cells. Mouse models revealed that disease-associated IBA1 + hepatic macrophages originated from bone marrow-derived monocytes. Using an unbiased, machine learning-based algorithm, IBA1 in combination with hepatocyte and ductular cell immunostaining-predicted advanced cirrhosis in human NASH, primary sclerosing cholangitis, and alcoholic hepatitis. CONCLUSIONS: Loss of hepatocytes and increased ductular reaction are tightly associated with monocyte-derived macrophage accumulation and represent the most prominent common immunological feature revealing the progression of NAFLD, primary sclerosing cholangitis, primary biliary cholangitis, and alcoholic hepatitis, suggesting IBA1 + CD163 low macrophages are key pathogenic drivers of human liver disease progression across diverse etiologies.


Asunto(s)
Colangitis Esclerosante , Hepatitis Alcohólica , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Colangitis Esclerosante/patología , Hepatitis Alcohólica/patología , Hígado/patología , Cirrosis Hepática/complicaciones , Macrófagos , Modelos Animales de Enfermedad
5.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269812

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) and its progressive form nonalcoholic steatohepatitis (NASH) comprise a spectrum of chronic liver diseases in the global population that can lead to end-stage liver disease and hepatocellular carcinoma (HCC). NAFLD is closely linked to the metabolic syndrome, and comorbidities such as type 2 diabetes, obesity and insulin resistance aggravate liver disease, while NAFLD promotes cardiovascular risk in affected patients. The pathomechanisms of NAFLD are multifaceted, combining hepatic factors including lipotoxicity, mechanisms of cell death and liver inflammation with extrahepatic factors including metabolic disturbance and dysbiosis. Nuclear receptors (NRs) are a family of ligand-controlled transcription factors that regulate glucose, fat and cholesterol homeostasis and modulate innate immune cell functions, including liver macrophages. In parallel with metabolic derangement in NAFLD, altered NR signaling is frequently observed and might be involved in the pathogenesis. Therapeutically, clinical data indicate that single drug targets thus far have been insufficient for reaching patient-relevant endpoints. Therefore, combinatorial treatment strategies with multiple drug targets or drugs with multiple mechanisms of actions could possibly bring advantages, by providing a more holistic therapeutic approach. In this context, peroxisome proliferator-activated receptors (PPARs) and other NRs are of great interest as they are involved in wide-ranging and multi-organ activities associated with NASH progression or regression. In this review, we summarize recent advances in understanding the pathogenesis of NAFLD, focusing on mechanisms of cell death, immunometabolism and the role of NRs. We outline novel therapeutic strategies and discuss remaining challenges.


Asunto(s)
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Carcinoma Hepatocelular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fibrosis , Humanos , Inflamación/patología , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
6.
Int J Cancer ; 149(5): 1189-1198, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33890289

RESUMEN

Therapy with immune checkpoint inhibitors (ICIs) can lead to durable tumor control in patients with various advanced stage malignancies. However, this is not the case for all patients, leading to an ongoing search for biomarkers predicting response and outcome to ICI. The B and T lymphocyte attenuator (BTLA) is an immune checkpoint expressed on immune cells that was shown to modulate therapeutic responses. Here, we evaluate circulating levels of its soluble form, soluble B and T lymphocyte attenuator (sBTLA), as a biomarker for the prediction of treatment response and outcome to ICI therapy. Serum levels of sBTLA were analyzed by multiplex immunoassay in n = 84 patients receiving ICI therapy for solid malignancies and 32 healthy controls. BTLA expression was evaluated on peripheral blood mononuclear cells in a subset of patients (n = 6) using multicolor flow cytometry. Baseline sBTLA serum levels were significantly higher in cancer patients compared to healthy controls. Importantly, circulating sBTLA levels were an independent prognostic factor for overall survival (OS). As such, patients with initial sBTLA levels above the calculated prognostic cutoff value (311.64 pg/mL) had a median OS of only 138 days compared to 526 for patients with sBTLA levels below this value (P = .001). Uni- and multivariate Cox regression analyses confirmed the prognostic role of sBTLA in the context of ICI therapy. Finally, we observed a significant correlation between sBTLA levels and the frequency of CD3 + CD8 + BTLA+ T cells in peripheral blood. Thus, our data suggest that circulating sBTLA could represent a noninvasive biomarker to predict outcome to ICI therapy, helping to select eligible therapy candidates.


Asunto(s)
Biomarcadores de Tumor/sangre , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Leucocitos Mononucleares/efectos de los fármacos , Neoplasias/mortalidad , Receptores Inmunológicos/sangre , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Pronóstico , Tasa de Supervivencia
7.
J Hepatol ; 73(4): 757-770, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32360434

RESUMEN

BACKGROUND & AIMS: Peroxisome proliferator-activated receptors (PPARs) are essential regulators of whole-body metabolism, but also modulate inflammation in immune cells, notably macrophages. We compared the effects of selective PPAR agonists to those of the pan-PPAR agonist lanifibranor in non-alcoholic fatty liver disease (NAFLD), and studied isoform-specific effects on hepatic macrophage biology. METHODS: Lanifibranor or selective PPARα (fenofibrate), PPARγ (pioglitazone) and PPARδ (GW501516) agonists were therapeutically administered in choline-deficient, amino acid-defined high-fat diet (CDAA-HFD)- and Western diet (WD)-fed mouse models of NAFLD. Acute liver injury was induced by carbon tetrachloride (CCl4). The role of PPARs on macrophage functionality was studied in isolated hepatic macrophages, bone marrow-derived macrophages stimulated with palmitic acid, and circulating monocytes from patients with NAFLD. RESULTS: Lanifibranor improved all histological features of steatohepatitis in CDAA-HFD-fed mice, including liver fibrosis, thereby combining and exceeding specific effects of the single PPAR agonists. Its potent anti-steatotic efficacy was confirmed in a 3D liver biochip model with primary cells. Infiltrating hepatic monocyte-derived macrophages were reduced following PPAR agonist administration, especially with lanifibranor, even after short-term treatment, paralleling improved steatosis and hepatitis. Lanifibranor similarly decreased steatosis, liver injury and monocyte infiltration in the WD model. In the acute CCl4 model, neither single nor pan-PPAR agonists directly affected monocyte recruitment. Hepatic macrophages isolated from WD-fed mice displayed a metabolically activated phenotype. Lanifibranor attenuated the accompanying inflammatory activation in both murine palmitic acid-stimulated bone marrow-derived macrophages, as well as patient-derived circulating monocytes, in a PPARδ-dependent fashion. CONCLUSION: Pan-PPAR agonists combine the beneficial effects of selective PPAR agonists and may counteract inflammation and disease progression more potently. PPARδ agonism and lanifibranor directly modulate macrophage activation, but not infiltration, thereby synergizing with beneficial metabolic effects of PPARα/γ agonists. LAY SUMMARY: Peroxisome proliferated-activated receptors (PPARs) are essential regulators of metabolism and inflammation. We demonstrated that the pan-PPAR agonist lanifibranor ameliorated all aspects of non-alcoholic fatty liver disease in independent experimental mouse models. Non-alcoholic fatty liver disease and fatty acids induce a specific polarization status in macrophages, which was altered by lanifibranor to increase expression of lipid handling genes, thereby decreasing inflammation. PPAR isoforms have differential therapeutic effects on fat-laden hepatocytes, activated hepatic stellate cells and inflammatory macrophages, supporting the clinical development of pan-PPAR agonists.


Asunto(s)
Hígado Graso , Fenofibrato , Hígado , Macrófagos , Receptores Activados del Proliferador del Peroxisoma , Tiazoles , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Hígado Graso/inducido químicamente , Hígado Graso/tratamiento farmacológico , Hígado Graso/patología , Fenofibrato/farmacología , Hipolipemiantes/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Macrófagos/efectos de los fármacos , Macrófagos/patología , Receptores Activados del Proliferador del Peroxisoma/agonistas , Tiazoles/farmacología
8.
Gastroenterology ; 156(6): 1877-1889.e4, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30710528

RESUMEN

BACKGROUND & AIMS: Inflammation in the liver provokes fibrosis, but inflammation is also important for tumor surveillance. Inhibitors of chemokine pathways, such as CXCL16 and CXCR6 regulation of lymphocyte trafficking, are being tested as antifibrotic agents, but their effects on the development of hepatocellular carcinoma (HCC) are unclear. We assessed the roles of CXCR6-dependent immune mechanisms in hepatocarcinogenesis. METHODS: C57BL/6J wild-type (WT) mice and CXCR6-deficient mice (Cxcr6eGfp/eGfp) were given injections of diethylnitrosamine (DEN) to induce liver cancer and α-galactosylceramide to activate natural killer T (NKT) cells. We also performed studies in mice with conditional, hepatocyte-specific deletion of NEMO, which develop inflammation-associated liver tumors (NemoLPC-KO and NemoLPC-KOCxcr6eGfp/eGfp mice). We collected liver tissues from patients with cirrhosis (n = 43), HCC (n = 35), and neither of these diseases (control individuals, n = 25). Human and mouse liver tissues were analyzed by histology, immunohistochemistry, flow cytometry, RNA expression arrays (from sorted hepatic lymphocytes), and matrix-assisted laser desorption/ionization imaging. Bone marrow was transferred from Cxcr6eGfp/eGfp or WT mice to irradiated C57BL/6J mice, and spleen and liver cells were analyzed by flow cytometry. CD4+ T cells or NKT cells were isolated from the spleen and liver of CD45.1+ WT mice and transferred into CXCR6-deficient mice after DEN injection. RESULTS: After DEN injection, CXCR6-deficient mice had a significantly higher tumor burden than WT mice and increased tumor progression, characterized by reduced intrahepatic numbers of invariant NKT and CD4+ T cells that express tumor necrosis factor and interferon gamma. Livers of NemoLPC-KOCxcr6eGfp/eGfp mice had significantly more senescent hepatocytes than livers of NemoLPC-KO mice. In studies of bone-marrow chimeras, adoptive cell transfer experiments, and analyses of NemoLPC-KO mice, we found that NKT and CD4 T cells promote the removal of senescent hepatocytes to prevent hepatocarcinogenesis, and that this process required CXCR6. Injection of WT with α-galactosylceramide increased removal of senescent hepatocytes by NKT cells. We observed peritumoral accumulation of CXCR6-associated lymphocytes in human HCC, which appeared reduced compared with cirrhosis tissues. CONCLUSIONS: In studies of mice with liver tumors, we found that CXCR6 mediated NKT-cell and CD4+ T-cell removal of senescent hepatocytes. Antifibrotic strategies to reduce CXCR6 activity in liver, or to reduce inflammation or modulate the immune response, should be tested for their effects on hepatocarcinogenesis.


Asunto(s)
Carcinogénesis/inmunología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Células T Asesinas Naturales/inmunología , Receptores CXCR6/genética , Receptores CXCR6/inmunología , Animales , Linfocitos T CD4-Positivos/metabolismo , Carcinogénesis/genética , Carcinoma Hepatocelular/metabolismo , Senescencia Celular , Dietilnitrosamina , Progresión de la Enfermedad , Galactosilceramidas/farmacología , Hepatocitos/fisiología , Humanos , Vigilancia Inmunológica/genética , Interferón gamma/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Cirrosis Hepática/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células T Asesinas Naturales/metabolismo , Receptores CXCR6/metabolismo , Carga Tumoral/genética , Factor de Necrosis Tumoral alfa/metabolismo
9.
Kidney Int ; 96(2): 505-516, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31155155

RESUMEN

Recent developments in optical tissue clearing have been difficult to apply for the morphometric analysis of organs with high cellular content and small functional structures, such as the kidney. Here, we establish combinations of genetic and immuno-labelling for single cell identification, tissue clearing and subsequent de-clarification for histoimmunopathology and transmission electron microscopy. Using advanced light microscopy and computational analyses, we investigated a murine model of crescentic nephritis, an inflammatory kidney disease typified by immune-mediated damage to glomeruli leading to the formation of hypercellular lesions and the rapid loss of kidney function induced by nephrotoxic serum. Results show a graded susceptibility of the glomeruli, significant podocyte loss and capillary injury. These effects are associated with activation of parietal epithelial cells and formation of glomerular lesions that may evolve and obstruct the kidney tubule, thereby explaining the loss of kidney function. Thus, our work provides new high-throughput endpoints for the analysis of complex tissues with single-cell resolution.


Asunto(s)
Glomerulonefritis/patología , Técnicas de Preparación Histocitológica/métodos , Imagenología Tridimensional , Podocitos/fisiología , Análisis de la Célula Individual/métodos , Animales , Capilares , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fluorescencia , Colorantes Fluorescentes/química , Genes Reporteros/genética , Glomerulonefritis/inmunología , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Podocitos/ultraestructura
10.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646522

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in western countries, with a continuously rising incidence. Gut-liver communication and microbiota composition have been identified as critical drivers of the NAFLD progression. Hence, it has been shown that microbiota depletion can ameliorate high-fat diet or western-diet induced experimental Non-alcoholic steatohepatitis (NASH). However, its functional implications in the methionine-choline dietary model, remain incompletely understood. Here, we investigated the physiological relevance of gut microbiota in methionine-choline deficient (MCD) diet induced NASH. Experimental liver disease was induced by 8 weeks of MCD feeding in wild-type (WT) mice, either with or without commensal microbiota depletion, by continuous broad-spectrum antibiotic (AB) treatment. MCD diet induced steatohepatitis was accompanied by a reduced gut microbiota diversity, indicating intestinal dysbiosis. MCD treatment prompted macroscopic shortening of the intestine, as well as intestinal villi in histology. However, gut microbiota composition of MCD-treated mice, neither resembled human NASH, nor did it augment the intestinal barrier integrity or intestinal inflammation. In the MCD model, AB treatment resulted in increased steatohepatitis activity, compared to microbiota proficient control mice. This phenotype was driven by pronounced neutrophil infiltration, while AB treatment only slightly increased monocyte-derived macrophages (MoMF) abundance. Our data demonstrated the differential role of gut microbiota, during steatohepatitis development. In the context of MCD induced steatohepatitis, commensal microbiota was found to be hepatoprotective.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/genética , Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Colina/efectos adversos , Colina/metabolismo , Deficiencia de Colina/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/genética , Variación Genética/genética , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Cirrosis Hepática/etiología , Cirrosis Hepática/patología , Masculino , Metionina/efectos adversos , Metionina/deficiencia , Metionina/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología
11.
Kidney Int ; 91(1): 70-85, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27678159

RESUMEN

Progressive renal diseases are associated with rarefaction of peritubular capillaries, but the ultrastructural and functional alterations of the microvasculature are not well described. To study this, we analyzed different time points during progressive kidney damage and fibrosis in 3 murine models of different disease etiologies. These models were unilateral ureteral obstruction, unilateral ischemia-reperfusion injury, and Col4a3-deficient mice, we analyzed ultrastructural alterations in patient biopsy specimens. Compared with kidneys of healthy mice, we found a significant and progressive reduction of peritubular capillaries in all models analyzed. Ultrastructurally, compared with the kidneys of control mice, focal widening of the subendothelial space and higher numbers of endothelial vacuoles and caveolae were found in fibrotic kidneys. Quantitative analysis showed that peritubular capillary endothelial cells in fibrotic kidneys had significantly and progressively reduced numbers of fenestrations and increased thickness of the cell soma and lamina densa of the capillary basement membrane. Similar ultrastructural changes were also observed in patient's kidney biopsy specimens. Compared with healthy murine kidneys, fibrotic kidneys had significantly increased extravasation of Evans blue dye in all 3 models. The extravasation could be visualized using 2-photon microscopy in real time in living animals and was mainly localized to capillary branching points. Finally, fibrotic kidneys in all models exhibited a significantly greater degree of interstitial deposition of fibrinogen. Thus, peritubular capillaries undergo significant ultrastructural and functional alterations during experimental progressive renal diseases, independent of the underlying injury. Analyses of these alterations could provide read-outs for the evaluation of therapeutic approaches targeting the renal microvasculature.


Asunto(s)
Capilares/patología , Células Endoteliales/patología , Enfermedades Renales/patología , Túbulos Renales/irrigación sanguínea , Túbulos Renales/patología , Animales , Membrana Basal/irrigación sanguínea , Membrana Basal/patología , Biopsia , Capilares/ultraestructura , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/ultraestructura , Fibrosis , Humanos , Inmunohistoquímica , Enfermedades Renales/etiología , Enfermedades Renales/genética , Túbulos Renales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microcirculación , Microscopía Electrónica de Rastreo , Microscopía de Fluorescencia por Excitación Multifotónica , Proteínas Serina-Treonina Quinasas/genética , Daño por Reperfusión/complicaciones , Factores de Tiempo , Obstrucción Ureteral/complicaciones
12.
Hepatology ; 64(5): 1667-1682, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27302828

RESUMEN

Acetaminophen (APAP, paracetamol) poisoning is a leading cause of acute liver failure (ALF) in humans and induces hepatocyte necrosis, followed by activation of the innate immune system, further aggravating liver injury. The role of infiltrating monocytes during the early phase of ALF is still ambiguous. Upon experimental APAP overdose in mice, monocyte-derived macrophages (MoMFs) massively accumulated in injured liver within 12-24 hours, whereas the number of tissue-resident macrophages (Kupffer cells) decreased. Influx of MoMFs is dependent on the chemokine receptor, chemokine (C-C motif) receptor 2 (CCR2), given that Ccr2-/- mice display reduced infiltration of monocytes and attenuated liver injury post-APAP overdose at early time points. As evidenced by intravital multiphoton microscopy of Ccr2 reporter mice, CCR2+ monocytes infiltrate liver as early as 8-12 hours post-APAP overdose and form dense cellular clusters around necrotic areas. CCR2+ MoMFs express a distinct pattern of inflammatory, but also repair-associated, genes in injured livers. Adoptive transfer experiments revealed that MoMFs primarily exert proinflammatory functions early post-APAP, thereby aggravating liver injury. Consequently, early pharmacological inhibition of either chemokine (C-C motif) ligand (CCL2; by the inhibitor, mNOX-E36) or CCR2 (by the orally available dual CCR2/CCR5 inhibitor, cenicriviroc) reduces monocyte infiltration and APAP-induced liver injury (AILI) in mice. Importantly, neither the early nor continuous inhibition of CCR2 hinder repair processes during resolution from injury. In line with this, human livers of ALF patients requiring liver transplantation reveal increased CD68+ hepatic macrophage numbers with massive infiltrates of periportal CCR2+ macrophages that display a proinflammatory polarization. CONCLUSION: Infiltrating monocyte-derived macrophages aggravate APAP hepatotoxicity, and the pharmacological inhibition of either CCL2 or CCR2 might bear therapeutic potential by reducing the inflammatory reaction during the early phase of AILI. (Hepatology 2016;64:1667-1682).


Asunto(s)
Acetaminofén/efectos adversos , Analgésicos no Narcóticos/efectos adversos , Antipiréticos/efectos adversos , Fallo Hepático Agudo/inducido químicamente , Receptores CCR2/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/química , Receptores CCR2/análisis , Índice de Severidad de la Enfermedad
13.
Clin Sci (Lond) ; 131(17): 2289-2301, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28739980

RESUMEN

The chemokine fractalkine (CX3CL1) and its receptor CX3CR1 are known to mediate leukocyte chemotaxis, adhesion and survival. In the liver, CX3CR1 is expressed on multiple cell types including monocytes and dendritic cells. However, the function of CX3CR1 on hepatic dendritic cells (HDCs) is still poorly understood. In this study, we investigated the role of CX3CR1 on mouse HDCs during homeostasis and following acute liver injury. At homeostasis, CX3CR1-expression was detected among CD11b+/CD103- type 2 myeloid HDCs (mHDCs) and these cells were characterized by the production of IL-10.   Mice treatment with the hepatotoxic agent CCl4 up-regulated liver IL-10 expression and stimulated the expansion of CX3CR1+ mHDCs which also showed a more mature phenotype. The absence of CX3CR1 in naïve CX3CR1gfp/gfp mice specifically reduced the CD11b+/IL-10+ mHDCs as compared to CX3CR1-proficient animals (CX3CR1+/gfp).  Following CCl4 poisoning, the liver recruitment and maturation of CD11b+ mHDCs was significantly attenuated in CX3CR1gfp/gfp mice. Furthermore, these mice suffered more severe hepatic injury and inflammation than CX3CR1+/gfp mice and showed a delated recovery from liver damage. Such a worsening of liver injury in CX3CR1gfp/gfp mice was associated with an impaired up-regulation of hepatic IL-10 expression and a lower number of IL-10 producing CD11b+ mHDCs. Consistently, IL-10 inactivation enhanced hepatic injury and inflammation in CX3CR1+/gfp mice receiving CCl4 Altogether, these data indicate a novel role of the CX3CL1/CX3CR1 axis in liver type 2 mHDC functions, pointing out the importance of CX3CR1 in promoting IL-10-mediated anti-inflammatory actions of HDCs.

14.
J Am Soc Nephrol ; 27(1): 132-42, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26041841

RESUMEN

The role of IL-6 signaling in renal diseases remains controversial, with data describing both anti-inflammatory and proinflammatory effects. IL-6 can act via classic signaling, engaging its two membrane receptors gp130 and IL-6 receptor (IL-6R). Alternatively, IL-6 trans-signaling requires soluble IL-6R (sIL-6R) to act on IL-6R-negative cells that express gp130. Here, we characterize the role of both pathways in crescentic nephritis. Patients with crescentic nephritis had significantly elevated levels of IL-6 in both serum and urine. Similarly, nephrotoxic serum-induced nephritis (NTN) in BALB/c mice was associated with elevated serum IL-6 levels. Levels of serum sIL-6R and renal downstream signals of IL-6 (phosphorylated signal transducer and activator of transcription 3, suppressor of cytokine signaling 3) increased over time in this model. Simultaneous inhibition of both IL-6 signaling pathways using anti-IL-6 antibody did not have a significant impact on NTN severity. In contrast, specific inhibition of trans-signaling using recombinant sgp130Fc resulted in milder disease. Vice versa, specific activation of trans-signaling using a recombinant IL-6-sIL-6R fusion molecule (Hyper-IL-6) significantly aggravated NTN and led to increased systolic BP in NTN mice. This correlated with increased renal mRNA synthesis of the Th17 cell cytokine IL-17A and decreased synthesis of resistin-like alpha (RELMalpha)-encoding mRNA, a surrogate marker of lesion-mitigating M2 macrophage subtypes. Collectively, our data suggest a central role for IL-6 trans-signaling in crescentic nephritis and offer options for more effective and specific therapeutic interventions in the IL-6 system.


Asunto(s)
Glomerulonefritis/etiología , Interleucina-6/fisiología , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Transducción de Señal
15.
RNA ; 20(6): 899-911, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24751651

RESUMEN

Macrophage activation by bacterial lipopolysaccharides (LPS) is induced through Toll-like receptor 4 (TLR4). The synthesis and activity of TLR4 downstream signaling molecules modulates the expression of pro- and anti-inflammatory cytokines. To address the impact of post-transcriptional regulation on that process, we performed RIP-Chip analysis. Differential association of mRNAs with heterogeneous nuclear ribonucleoprotein K (hnRNP K), an mRNA-specific translational regulator in differentiating hematopoietic cells, was studied in noninduced and LPS-activated macrophages. Analysis of interactions affected by LPS revealed several mRNAs encoding TLR4 downstream kinases and their modulators. We focused on transforming growth factor-ß-activated kinase 1 (TAK1) a central player in TLR4 signaling. HnRNP K interacts specifically with a sequence in the TAK1 mRNA 3' UTR in vitro. Silencing of hnRNP K does not affect TAK1 mRNA synthesis or stability but enhances TAK1 mRNA translation, resulting in elevated TNF-α, IL-1ß, and IL-10 mRNA expression. Our data suggest that the hnRNP K-3' UTR complex inhibits TAK1 mRNA translation in noninduced macrophages. LPS-dependent TLR4 activation abrogates translational repression and newly synthesized TAK1 boosts macrophage inflammatory response.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Lipopolisacáridos/inmunología , Quinasas Quinasa Quinasa PAM/genética , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/inmunología , Animales , Línea Celular , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Ribonucleoproteína Heterogénea-Nuclear Grupo K/inmunología , Inflamación/genética , Inflamación/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Activación de Macrófagos/genética , Ratones , Biosíntesis de Proteínas/inmunología , Procesamiento Postranscripcional del ARN/genética , Procesamiento Postranscripcional del ARN/inmunología , ARN Mensajero/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
16.
Hepatology ; 62(5): 1405-16, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26178698

RESUMEN

UNLABELLED: Nonalcoholic fatty liver disease is seen as the hepatic manifestation of the metabolic syndrome and represents the most common liver disease in Western societies. The G protein-coupled chemokine receptor CX3CR1 plays a central role in several metabolic syndrome-related disease manifestations and is involved in maintaining intestinal homeostasis. Because diet-induced intestinal dysbiosis is a driver for nonalcoholic fatty liver disease, we hypothesized that CX3CR1 may influence the development of steatohepatitis. In two independent models of diet-induced steatohepatitis (high-fat diet and methionine/choline-deficient diet), CX3CR1 protected mice from excessive hepatic steatosis and inflammation, as well as systemic glucose intolerance. Lack of Cx3cr1 expression was associated with significantly altered intestinal microbiota composition, which was linked to an impaired intestinal barrier. Concomitantly, endotoxin levels in portal serum and inflammatory macrophages in liver were increased in Cx3cr1-/- mice, indicating an increased inflammatory response. Depletion of intestinal microbiota by administration of broad-spectrum antibiotics suppressed the number of infiltrating macrophages and promoted macrophage polarization in liver. Consequently, antibiotic-treated mice demonstrated a marked improvement of steatohepatitis. CONCLUSION: Microbiota-mediated activation of the innate immune responses through CX3CR1 is crucial for controlling steatohepatitis progression, which recognizes CX3CR1 as an essential gatekeeper in this scenario.


Asunto(s)
Homeostasis , Mucosa Intestinal/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inmunología , Receptores de Quimiocina/fisiología , Animales , Antibacterianos/farmacología , Traslocación Bacteriana , Glucemia/análisis , Receptor 1 de Quimiocinas CX3C , Inmunidad Innata , Intestinos/microbiología , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota , Enfermedad del Hígado Graso no Alcohólico/metabolismo
17.
Hepatology ; 62(1): 279-91, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25810240

RESUMEN

UNLABELLED: The liver is essential for inducing immunological tolerance toward harmless antigens to maintain immune system homeostasis. However, the precise cellular mechanisms of tolerance induction against particle-bound antigens, the role of the local hepatic microenvironment, and implications for therapeutic targets in immune-mediated diseases are currently unclear. In order to elucidate cellular mechanisms of tolerance induction in healthy and injured liver, we developed a novel in vivo system combining the systemic delivery of low-dose peptide antigens coupled to inert particles, immunological readouts, and sophisticated intravital multiphoton microscopy-based imaging of liver in mice. We show that liver resident macrophages, Kupffer cells (KCs), but not hepatic monocyte-derived macrophages or dendritic cells (DCs), are the central cellular scavenger for circulating particle-associated antigens in homeostasis. KC-associated antigen presentation induces CD4 T-cell arrest, expansion of naturally occurring Foxp3(+) CD25(+) interleukin-10-producing antigen-specific regulatory T cells (Tregs) and tolerogenic immunity. Particle-associated tolerance induction in the liver protected mice from kidney inflammation in T-cell-mediated glomerulonephritis, indicating therapeutic potential of targeting KC for immune-mediated extrahepatic disorders. Liver inflammation in two independent experimental models of chronic liver injury and fibrosis abrogated tolerance induction and led to an immunogenic reprogramming of antigen-specific CD4 T cells. In injured liver, infiltrating monocyte-derived macrophages largely augment the hepatic phagocyte compartment, resulting in antigen redistribution between myeloid cell populations and, simultaneously, KCs lose signature markers of their tolerogenic phenotype. CONCLUSIONS: Hepatic induction of tissue-protective immunological tolerance against particulate antigens is dependent on KCs as well as on a noninflamed liver microenvironment, thereby providing mechanistic explanations for the clinical observation of immune dysfunction and tolerance break in patients with advanced liver diseases.


Asunto(s)
Tolerancia Inmunológica , Macrófagos del Hígado/fisiología , Hígado/inmunología , Animales , Presentación de Antígeno , Antígenos , Proliferación Celular , Ratones Endogámicos C57BL , Linfocitos T/fisiología
18.
J Am Soc Nephrol ; 26(9): 2105-17, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25762060

RESUMEN

ANCA-associated vasculitis is the most frequent cause of crescentic GN. To define new molecular and/or cellular biomarkers of this disease in the kidney, we performed microarray analyses of renal biopsy samples from patients with ANCA-associated crescentic GN. Expression profiles were correlated with clinical data in a prospective study of patients with renal ANCA disease. CC chemokine ligand 18 (CCL18), acting through CC chemokine receptor 8 (CCR8) on mononuclear cells, was identified as the most upregulated chemotactic cytokine in patients with newly diagnosed ANCA-associated crescentic GN. Macrophages and myeloid dendritic cells in the kidney were detected as CCL18-producing cells. The density of CCL18(+) cells correlated with crescent formation, interstitial inflammation, and impairment of renal function. CCL18 protein levels were higher in sera of patients with renal ANCA disease compared with those in sera of patients with other forms of crescentic GN. CCL18 serum levels were higher in patients who suffered from ANCA-associated renal relapses compared with those in patients who remained in remission. Using a murine model of crescentic GN, we explored the effects of the CCL18 murine functional analog CCL8 and its receptor CCR8 on kidney function and morphology. Compared with wild-type mice, Ccr8(-/-) mice had significantly less infiltration of pathogenic mononuclear phagocytes. Furthermore, Ccr8(-/-) mice maintained renal function better and had reduced renal tissue injury. In summary, our data indicate that CCL18 drives renal inflammation through CCR8-expressing cells and could serve as a biomarker for disease activity and renal relapse in ANCA-associated crescentic GN.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/complicaciones , Quimiocinas CC/sangre , Glomerulonefritis/etiología , Glomerulonefritis/metabolismo , Anciano , Animales , Biomarcadores/sangre , Quimiocina CCL8/genética , Quimiocina CCL8/metabolismo , Quimiocinas CC/análisis , Células Dendríticas/química , Femenino , Glomerulonefritis/patología , Glomerulonefritis/fisiopatología , Humanos , Macrófagos/química , Masculino , Ratones , Persona de Mediana Edad , Estudios Prospectivos , Análisis por Matrices de Proteínas , Receptores CCR8/genética , Receptores CCR8/metabolismo , Regulación hacia Arriba
19.
Hepatology ; 59(3): 1060-72, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24481979

RESUMEN

UNLABELLED: Macrophages constitute a major proinflammatory component during chronic liver diseases and are considered a key factor in promoting hepatic fibrosis. However, there is increasing evidence that distinct monocyte and macrophage subsets exert critical functions in regression from organ fibrosis as well. Experimental mouse models of fibrosis regression have identified "restorative" macrophages as Ly-6C (Ly6C, Gr1) low-expressing, monocyte-derived cells. We investigated molecular pathways balancing proinflammatory and restorative macrophages during fibrosis regression as well as pharmacologically augmenting beneficial macrophage functionality in fibrosis resolution. Therefore, we employed a Spiegelmer-based inhibitor of the chemokine, C-C motif chemokine ligand 2 (CCL2; monocyte chemoattractant protein 1), termed mNOX-E36, in the regression phase of two murine models of toxic (CCl4 ) and metabolic (methionine-choline-deficient diet) liver fibrosis. Although inflammation rapidly declined after cessation of injury, we observed a transient influx of Ly-6C(+) infiltrating monocytes (iMΦ), which are characterized by typical macrophage morphology, up-regulated expression of CCR2, and the pro-inflammatory cytokine, tumor necrosis factor (TNF), in injured liver. By inhibiting the early influx of Ly-6C(+) iMΦ by the CCL2 inhibitor, mNOX-E36, the intrahepatic macrophage equilibration shifted toward the "restorative" Ly-6C(-) subset of iMΦ. Consequently, fibrosis resolution was significantly accelerated upon mNOX-E36 administration in both models. Blocking transient recruitment of infiltrating Ly-6C(+) monocytes, but not direct effects of the inhibitor on the remaining macrophages, resulted in reduced intrahepatic levels of proinflammatory cytokines. CONCLUSION: Transient CCL2-dependent recruitment of infiltrating Ly-6C(+) monocytes during fibrosis regression counteracts scar resolution by perpetuating inflammatory reactions through release of proinflammatory cytokines such as TNF. Pharmacological inhibition of Ly-6C(+) monocyte recruitment using the CCL2-inhibitor, mNOX-E36, accelerates regression from toxic and metabolic liver fibrosis in two independent experimental models.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/inmunología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/inmunología , Macrófagos/inmunología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Crónica , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
20.
Hepatology ; 59(2): 630-42, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23959575

RESUMEN

UNLABELLED: Chronic liver injury promotes hepatic inflammation, representing a prerequisite for organ fibrosis. We hypothesized a contribution of chemokine receptor CCR6 and its ligand, CCL20, which may regulate migration of T-helper (Th)17, regulatory, and gamma-delta (γδ) T cells. CCR6 and CCL20 expression was intrahepatically up-regulated in patients with chronic liver diseases (n = 50), compared to control liver (n = 5). Immunohistochemistry revealed the periportal accumulation of CCR6(+) mononuclear cells and CCL20 induction by hepatic parenchymal cells in liver disease patients. Similarly, in murine livers, CCR6 was expressed by macrophages, CD4 and γδ T-cells, and up-regulated in fibrosis, whereas primary hepatocytes induced CCL20 upon experimental injury. In two murine models of chronic liver injury (CCl4 and methionine-choline-deficient diet), Ccr6(-/-) mice developed more severe fibrosis with strongly enhanced hepatic immune cell infiltration, compared to wild-type (WT) mice. Although CCR6 did not affect hepatic Th-cell subtype composition, CCR6 was explicitly required by the subset of interleukin (IL)-17- and IL-22-expressing γδ T cells for accumulation in injured liver. The adoptive transfer of WT γδ, but not CD4 T cells, into Ccr6(-/-) mice reduced hepatic inflammation and fibrosis in chronic injury to WT level. The anti-inflammatory function of hepatic γδ T cells was independent of IL-17, as evidenced by transfer of Il-17(-/-) cells. Instead, hepatic γδ T cells colocalized with hepatic stellate cells (HSCs) in vivo and promoted apoptosis of primary murine HSCs in a cell-cell contact-dependent manner, involving Fas-ligand (CD95L). Consistent with γδ T-cell-induced HSC apoptosis, activated myofibroblasts were more frequent in fibrotic livers of Ccr6(-/-) than in WT mice. CONCLUSION: γδ T cells are recruited to the liver by CCR6 upon chronic injury and protect the liver from excessive inflammation and fibrosis by inhibiting HSCs.


Asunto(s)
Movimiento Celular , Hepatitis/prevención & control , Cirrosis Hepática/prevención & control , Hepatopatías/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores CCR6/metabolismo , Linfocitos T/metabolismo , Animales , Apoptosis , Estudios de Casos y Controles , Quimiocina CCL20/metabolismo , Modelos Animales de Enfermedad , Femenino , Hepatitis/metabolismo , Hepatitis/patología , Humanos , Interleucina-17/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hepatopatías/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CCR6/deficiencia , Receptores CCR6/genética , Linfocitos T/patología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Células Th17/metabolismo , Células Th17/patología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA