Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(7998): 283-287, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297128

RESUMEN

Ultracold polyatomic molecules offer opportunities1 in cold chemistry2,3, precision measurements4 and quantum information processing5,6, because of their rich internal structure. However, their increased complexity compared with diatomic molecules presents a challenge in using conventional cooling techniques. Here we demonstrate an approach to create weakly bound ultracold polyatomic molecules by electroassociation7 (F.D. et al., manuscript in preparation) in a degenerate Fermi gas of microwave-dressed polar molecules through a field-linked resonance8-11. Starting from ground-state NaK molecules, we create around 1.1 × 103 weakly bound tetratomic (NaK)2 molecules, with a phase space density of 0.040(3) at a temperature of 134(3) nK, more than 3,000 times colder than previously realized tetratomic molecules12. We observe a maximum tetramer lifetime of 8(2) ms in free space without a notable change in the presence of an optical dipole trap, indicating that these tetramers are collisionally stable. Moreover, we directly image the dissociated tetramers through microwave-field modulation to probe the anisotropy of their wavefunction in momentum space. Our result demonstrates a universal tool for assembling weakly bound ultracold polyatomic molecules from smaller polar molecules, which is a crucial step towards Bose-Einstein condensation of polyatomic molecules and towards a new crossover from a dipolar Bardeen-Cooper-Schrieffer superfluid13-15 to a Bose-Einstein condensation of tetramers. Moreover, the long-lived field-linked state provides an ideal starting point for deterministic optical transfer to deeply bound tetramer states16-18.

2.
Nature ; 613(7944): 463-467, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653561

RESUMEN

Conventional superconductivity emerges from pairing of charge carriers-electrons or holes-mediated by phonons1. In many unconventional superconductors, the pairing mechanism is conjectured to be mediated by magnetic correlations2, as captured by models of mobile charges in doped antiferromagnets3. However, a precise understanding of the underlying mechanism in real materials is still lacking and has been driving experimental and theoretical research for the past 40 years. Early theoretical studies predicted magnetic-mediated pairing of dopants in ladder systems4-8, in which idealized theoretical toy models explained how pairing can emerge despite repulsive interactions9. Here we experimentally observe this long-standing theoretical prediction, reporting hole pairing due to magnetic correlations in a quantum gas of ultracold atoms. By engineering doped antiferromagnetic ladders with mixed-dimensional couplings10, we suppress Pauli blocking of holes at short length scales. This results in a marked increase in binding energy and decrease in pair size, enabling us to observe pairs of holes predominantly occupying the same rung of the ladder. We find a hole-hole binding energy of the order of the superexchange energy and, upon increased doping, we observe spatial structures in the pair distribution, indicating repulsion between bound hole pairs. By engineering a configuration in which binding is strongly enhanced, we delineate a strategy to increase the critical temperature for superconductivity.

3.
Nature ; 614(7946): 59-63, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725996

RESUMEN

Scattering resonances are an essential tool for controlling the interactions of ultracold atoms and molecules. However, conventional Feshbach scattering resonances1, which have been extensively studied in various platforms1-7, are not expected to exist in most ultracold polar molecules because of the fast loss that occurs when two molecules approach at a close distance8-10. Here we demonstrate a new type of scattering resonance that is universal for a wide range of polar molecules. The so-called field-linked resonances11-14 occur in the scattering of microwave-dressed molecules because of stable macroscopic tetramer states in the intermolecular potential. We identify two resonances between ultracold ground-state sodium-potassium molecules and use the microwave frequencies and polarizations to tune the inelastic collision rate by three orders of magnitude, from the unitary limit to well below the universal regime. The field-linked resonance provides a tuning knob to independently control the elastic contact interaction and the dipole-dipole interaction, which we observe as a modification in the thermalization rate. Our result provides a general strategy for resonant scattering between ultracold polar molecules, which paves the way for realizing dipolar superfluids15 and molecular supersolids16, as well as assembling ultracold polyatomic molecules.

4.
Nature ; 620(7974): 521-524, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495696

RESUMEN

Boyle's 1662 observation that the volume of a gas is, at constant temperature, inversely proportional to pressure, offered a prototypical example of how an equation of state (EoS) can succinctly capture key properties of a many-particle system. Such relationships are now cornerstones of equilibrium thermodynamics1. Extending thermodynamic concepts to far-from-equilibrium systems is of great interest in various contexts, including glasses2,3, active matter4-7 and turbulence8-11, but is in general an open problem. Here, using a homogeneous ultracold atomic Bose gas12, we experimentally construct an EoS for a turbulent cascade of matter waves13,14. Under continuous forcing at a large length scale and dissipation at a small one, the gas exhibits a non-thermal, but stationary, state, which is characterized by a power-law momentum distribution15 sustained by a scale-invariant momentum-space energy flux16. We establish the amplitude of the momentum distribution and the underlying energy flux as equilibrium-like state variables, related by an EoS that does not depend on the details of the energy injection or dissipation, or on the history of the system. Moreover, we show that the equations of state for a wide range of interaction strengths and gas densities can be empirically scaled onto each other. This results in a universal dimensionless EoS that sets benchmarks for the theory and should also be relevant for other turbulent systems.

5.
Nature ; 606(7914): 484-488, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650440

RESUMEN

Topology in quantum many-body systems has profoundly changed our understanding of quantum phases of matter. The model that has played an instrumental role in elucidating these effects is the antiferromagnetic spin-1 Haldane chain1,2. Its ground state is a disordered state, with symmetry-protected fourfold-degenerate edge states due to fractional spin excitations. In the bulk, it is characterized by vanishing two-point spin correlations, gapped excitations and a characteristic non-local order parameter3,4. More recently it has been understood that the Haldane chain forms a specific example of a more general classification scheme of symmetry-protected topological phases of matter, which is based on ideas connected to quantum information and entanglement5-7. Here, we realize a finite-temperature version of such a topological Haldane phase with Fermi-Hubbard ladders in an ultracold-atom quantum simulator. We directly reveal both edge and bulk properties of the system through the use of single-site and particle-resolved measurements, as well as non-local correlation functions. Continuously changing the Hubbard interaction strength of the system enables us to investigate the robustness of the phase to charge (density) fluctuations far from the regime of the Heisenberg model, using a novel correlator.

6.
Nature ; 572(7769): 358-362, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31413377

RESUMEN

Polarons-electronic charge carriers 'dressed' by a local polarization of the background environment-are among the most fundamental quasiparticles in interacting many-body systems, and emerge even at the level of a single dopant1. In the context of the two-dimensional Fermi-Hubbard model, polarons are predicted to form around charged dopants in an antiferromagnetic background in the low-doping regime, close to the Mott insulating state2-7; this prediction is supported by macroscopic transport and spectroscopy measurements in materials related to high-temperature superconductivity8. Nonetheless, a direct experimental observation of the internal structure of magnetic polarons is lacking. Here we report the microscopic real-space characterization of magnetic polarons in a doped Fermi-Hubbard system, enabled by the single-site spin and density resolution of our ultracold-atom quantum simulator. We reveal the dressing of doublons by a local reduction-and even sign reversal-of magnetic correlations, which originates from the competition between kinetic and magnetic energy in the system. The experimentally observed polaron signatures are found to be consistent with an effective string model at finite temperature7. We demonstrate that delocalization of the doublon is a necessary condition for polaron formation, by comparing this setting with a scenario in which a doublon is pinned to a lattice site. Our work could facilitate the study of interactions between polarons, which may lead to collective behaviour, such as stripe formation, as well as the microscopic exploration of the fate of polarons in the pseudogap and 'bad metal' phases.

7.
Nature ; 566(7743): E5, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30670874

RESUMEN

In this Letter, the affiliation for Christian Gross should have been 'Max-Planck-Institut für Quantenoptik, Garching, Germany' instead of 'Fakultät für Physik, Ludwig-Maximilians-Universität, Munich, Germany'; this has been corrected online.

8.
Nature ; 565(7737): 56-60, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30542155

RESUMEN

The interplay between magnetism and doping is at the origin of exotic strongly correlated electronic phases and can lead to novel forms of magnetic ordering. One example is the emergence of incommensurate spin-density waves, which have wavevectors that do not belong to the reciprocal lattice. In one dimension this effect is a hallmark of Luttinger liquid theory, which also describes the low-energy physics of the Hubbard model1. Here we use a quantum simulator that uses ultracold fermions in an optical lattice2-8 to directly observe such incommensurate spin correlations in doped and spin-imbalanced Hubbard chains using fully spin- and density-resolved quantum gas microscopy. Doping is found to induce a linear change in the spin-density wavevector, in excellent agreement with predictions from Luttinger theory. For non-zero polarization we observe a reduction in the wavevector with magnetization, as expected from the antiferromagnetic Heisenberg model in a magnetic field. We trace the microscopic-scale origin of these incommensurate correlations to holes, doublons (double occupancies) and excess spins, which act as delocalized domain walls for the antiferromagnetic order. In addition, by inducing interchain coupling we observe fundamentally different spin correlations around doublons and suppression of incommensurate magnetism at finite (low) temperature in the two-dimensional regime9. Our results demonstrate how access to the full counting statistics of all local degrees of freedom can be used to study fundamental phenomena in strongly correlated many-body physics.

9.
Phys Rev Lett ; 128(22): 223601, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35714252

RESUMEN

The two-fluid model is fundamental for the description of superfluidity. In the nearly incompressible liquid regime, it successfully describes first and second sound, corresponding, respectively, to density and entropy waves, in both liquid helium and unitary Fermi gases. Here, we study the two sounds in the opposite regime of a highly compressible fluid, using an ultracold ^{39}K Bose gas in a three-dimensional box trap. We excite the longest-wavelength mode of our homogeneous gas, and observe two distinct resonant oscillations below the critical temperature, of which only one persists above it. In a microscopic mode-structure analysis, we find agreement with the hydrodynamic theory, where first and second sound involve density oscillations dominated by, respectively, thermal and condensed atoms. Varying the interaction strength, we explore the crossover from hydrodynamic to collisionless behavior in a normal gas.

10.
Phys Rev Lett ; 126(6): 060402, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33635703

RESUMEN

We study the decay mechanism of the gapped lowest-lying axial excitation of a quasipure atomic Bose-Einstein condensate confined in a cylindrical box trap. Owing to the absence of accessible lower-energy modes, or direct coupling to an external bath, this excitation is protected against one-body (linear) decay, and the damping mechanism is exclusively nonlinear. We develop a universal theoretical model that explains this fundamentally nonlinear damping as a process whereby two quanta of the gapped lowest excitation mode couple to a higher-energy mode, which subsequently decays into a continuum. We find quantitative agreement between our experiments and the predictions of this model. Finally, by strongly driving the system below its (lowest) resonant frequency, we observe third-harmonic generation, a hallmark of nonlinear behavior.

11.
Phys Rev Lett ; 123(2): 020405, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386523

RESUMEN

Three-body recombination in quantum gases is traditionally associated with heating, but it was recently found that it can also cool the gas. We show that in a partially condensed three-dimensional homogeneous Bose gas three-body loss could even purify the sample, that is, reduce the entropy per particle and increase the condensed fraction η. We predict that the evolution of η under continuous three-body loss can, depending on small changes in the initial conditions, exhibit two qualitatively different behaviors-if it is initially above a certain critical value, η increases further, whereas clouds with lower initial η evolve towards a thermal gas. These dynamical effects should be observable under realistic experimental conditions.

12.
Phys Rev Lett ; 115(26): 263001, 2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26764988

RESUMEN

The Pauli exclusion principle is one of the most fundamental manifestations of quantum statistics. Here, we report on its local observation in a spin-polarized degenerate gas of fermions in an optical lattice. We probe the gas with single-site resolution using a new generation quantum gas microscope avoiding the common problem of light induced losses. In the band insulating regime, we measure a strong local suppression of particle number fluctuations and a low local entropy per atom. Our work opens a new avenue for studying quantum correlations in fermionic quantum matter both in and out of equilibrium.

13.
Science ; 357(6350): 484-487, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28774925

RESUMEN

Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.

14.
Science ; 353(6305): 1257-60, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27634528

RESUMEN

The repulsive Hubbard Hamiltonian is one of the foundational models describing strongly correlated electrons and is believed to capture essential aspects of high-temperature superconductivity. Ultracold fermions in optical lattices allow for the simulation of the Hubbard Hamiltonian with control over kinetic energy, interactions, and doping. A great challenge is to reach the required low entropy and to observe antiferromagnetic spin correlations beyond nearest neighbors, for which quantum gas microscopes are ideal. Here, we report on the direct, single-site resolved detection of antiferromagnetic correlations extending up to three sites in spin-1/2 Hubbard chains, which requires entropies per particle well below s* = ln(2). The simultaneous detection of spin and density opens the route toward the study of the interplay between magnetic ordering and doping in various dimensions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA