Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Stem Cells ; 41(11): 1060-1075, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37609930

RESUMEN

BACKGROUND: Circulating osteoprogenitors (COP) are a population of cells in the peripheral circulation that possess functional and phenotypical characteristics of multipotent stromal cells (MSCs). This population has a solid potential to become an abundant, accessible, and replenishable source of MSCs with multiple potential clinical applications. However, a comprehensive functional characterization of COP cells is still required to test and fully develop their use in clinical settings. METHODS: This study characterized COP cells by comparing them to bone marrow-derived MSCs (BM-MSCs) and adipose-derived MSCs (ASCs) through detailed transcriptomic and proteomic analyses. RESULTS: We demonstrate that COP cells have a distinct gene and protein expression pattern with a significantly stronger immune footprint, likely owing to their hematopoietic lineage. In addition, regarding progenitor cell differentiation and proliferation pathways, COP cells have a similar expression pattern to BM-MSCs and ASCs. CONCLUSION: COP cells are a unique but functionally similar population to BM-MSCs and ASCs, sharing their proliferation and differentiation capacity, thus presenting an accessible source of MSCs with strong potential for translational regenerative medicine strategies.


Asunto(s)
Tejido Adiposo , Células Madre Mesenquimatosas , Humanos , Tejido Adiposo/metabolismo , Proteómica , Células de la Médula Ósea , Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/metabolismo , Células Cultivadas , Proliferación Celular
2.
Biogerontology ; 23(5): 629-640, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36056226

RESUMEN

Understanding the pathophysiology behind age-related diseases is an urgent need as the elderly population continues to grow. With age, there is a high risk of musculoskeletal deterioration and associated morbidity and mortality. Although the exact mechanism behind age-related degeneration is unknown, it is well established that alteration in cellular metabolism is one of the important contributing factors. Alteration in signaling pathways with age leads to the accumulation or depletion of several metabolites that play a vital role in musculoskeletal pathophysiology. This study aimed to identify age-related changes in bone tissue metabolites in C57BL/6 mice. We then correlated the differentially expressed metabolites with their functions in bone biology. In both aged males and females, hydroxyproline, glutamine, and alpha-linolenic acid levels were decreased. In aged females, Ornithine (p value = 0.001), L-Proline (p value = 0.008), Uridine (p value = 0.001), Aspartic Acid (p value = 0.004) levels were significantly decreased, and glutamate (p value = 0.002) was elevated. In aged males, N-acetyl-D-glucosamine (pvalue = 0.010), Adrenic acid (pvalue = 0.0099), Arachidonic acid (p value = 0.029) and Allantoin (p value = 0.004) levels were decreased. Metabolic pathway analysis revealed that purine and D-glutamine and D-glutamate metabolism were significantly altered in both sexes, while arginine biosynthesis in females and lipid metabolism in males were highly affected. These differences in metabolic signaling might be one of the reasons for the discrepancy in musculoskeletal disease manifestation between the two sexes. Understanding the role of these metabolites play in the aging bone will allow for new sex-specific targeted therapies against the progression of musculoskeletal diseases.


Asunto(s)
Envejecimiento , Metabolismo de los Lípidos , Anciano , Envejecimiento/metabolismo , Animales , Huesos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ornitina/metabolismo
3.
Mediators Inflamm ; 2021: 2911578, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621138

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), affecting multiple organ systems, including the respiratory tract and lungs. Several studies have reported that the tryptophan-kynurenine pathway is altered in COVID-19 patients. The tryptophan-kynurenine pathway plays a vital role in regulating inflammation, metabolism, immune responses, and musculoskeletal system biology. In this minireview, we surmise the effects of the kynurenine pathway in COVID-19 patients and how this pathway might impact muscle and bone biology.


Asunto(s)
Enfermedades Óseas/etiología , COVID-19/complicaciones , Quinurenina/metabolismo , Enfermedades Musculares/etiología , SARS-CoV-2 , Triptófano/metabolismo , Animales , Humanos , Receptores de Hidrocarburo de Aril/fisiología , Transducción de Señal/fisiología
4.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467640

RESUMEN

Mesenchymal stem cells (MSCs) are a promising therapy to improve vascular repair, yet their role in ischemic retinopathy is not fully understood. The aim of this study is to investigate the impact of modulating the neurotrophin receptor; p75NTR on the vascular protection of MSCs in an acute model of retinal ischemia/reperfusion (I/R). Wild type (WT) and p75NTR-/- mice were subjected to I/R injury by increasing intra-ocular pressure to 120 mmHg for 45 min, followed by perfusion. Murine GFP-labeled MSCs (100,000 cells/eye) were injected intravitreally 2 days post-I/R and vascular homing was assessed 1 week later. Acellular capillaries were counted using trypsin digest 10-days post-I/R. In vitro, MSC-p75NTR was modulated either genetically using siRNA or pharmacologically using the p75NTR modulator; LM11A-31, and conditioned media were co-cultured with human retinal endothelial cells (HREs) to examine the angiogenic response. Finally, visual function in mice undergoing retinal I/R and receiving LM11A-31 was assessed by visual-clue water-maze test. I/R significantly increased the number of acellular capillaries (3.2-Fold) in WT retinas, which was partially ameliorated in p75NTR-/- retinas. GFP-MSCs were successfully incorporated and engrafted into retinal vasculature 1 week post injection and normalized the number of acellular capillaries in p75NTR-/- retinas, yet ischemic WT retinas maintained a 2-Fold increase. Silencing p75NTR on GFP-MSCs coincided with a higher number of cells homing to the ischemic WT retinal vasculature and normalized the number of acellular capillaries when compared to ischemic WT retinas receiving scrambled-GFP-MSCs. In vitro, silencing p75NTR-MSCs enhanced their secretome, as evidenced by significant increases in SDF-1, VEGF and NGF release in MSCs conditioned medium; improved paracrine angiogenic response in HREs, where HREs showed enhanced migration (1.4-Fold) and tube formation (2-Fold) compared to controls. In parallel, modulating MSCs-p75NTR using LM11A-31 resulted in a similar improvement in MSCs secretome and the enhanced paracrine angiogenic potential of HREs. Further, intervention with LM11A-31 significantly mitigated the decline in visual acuity post retinal I/R injury. In conclusion, p75NTR modulation can potentiate the therapeutic potential of MSCs to harness vascular repair in ischemic retinopathy diseases.


Asunto(s)
Células Madre Mesenquimatosas/citología , Receptores de Factor de Crecimiento Nervioso/genética , Daño por Reperfusión/metabolismo , Vasos Retinianos/metabolismo , Animales , Capilares/metabolismo , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Medios de Cultivo Condicionados/química , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Endotelio/metabolismo , Eliminación de Gen , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica , Factor de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Daño por Reperfusión/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Int J Mol Sci ; 22(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066870

RESUMEN

The gut microflora is a vital component of the gastrointestinal (GI) system that regulates local and systemic immunity, inflammatory response, the digestive system, and overall health. Older people commonly suffer from inadequate nutrition or poor diets, which could potentially alter the gut microbiota. The essential amino acid (AA) tryptophan (TRP) is a vital diet component that plays a critical role in physiological stress responses, neuropsychiatric health, oxidative systems, inflammatory responses, and GI health. The present study investigates the relationship between varied TRP diets, the gut microbiome, and inflammatory responses in an aged mouse model. We fed aged mice either a TRP-deficient (0.1%), TRP-recommended (0.2%), or high-TRP (1.25%) diet for eight weeks and observed changes in the gut bacterial environment and the inflammatory responses via cytokine analysis (IL-1a, IL-6, IL-17A, and IL-27). The mice on the TRP-deficient diets showed changes in their bacterial abundance of Coriobacteriia class, Acetatifactor genus, Lachnospiraceae family, Enterococcus faecalis species, Clostridium sp genus, and Oscillibacter genus. Further, these mice showed significant increases in IL-6, IL-17A, and IL-1a and decreased IL-27 levels. These data suggest a direct association between dietary TRP content, the gut microbiota microenvironment, and inflammatory responses in aged mice models.


Asunto(s)
Envejecimiento/patología , Dieta , Microbioma Gastrointestinal , Inflamación/patología , Triptófano/deficiencia , Envejecimiento/sangre , Animales , Bacterias/clasificación , Biodiversidad , Citocinas/sangre , Heces/microbiología , Inflamación/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Filogenia
6.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114603

RESUMEN

There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo treatment with KYN significantly increased osteoclast number lining bone surfaces. Here, we report the direct effect of KYN on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in Raw 264.7 macrophage cells, and we propose a potential mechanism for these KYN-mediated effects. We show that KYN/RANKL treatment results in enhancement of RANKL-induced osteoclast differentiation. KYN drives upregulation and activation of the key osteoclast transcription factors, c-fos and NFATc1 resulting in an increase in the number of multinucleated TRAP+ osteoclasts, and in hydroxyapatite bone resorptive activity. Mechanistically, the KYN receptor, aryl hydrocarbon receptor (AhR), plays an important role in the induction of osteoclastogenesis. We show that blocking AhR signaling using an AhR antagonist, or AhR siRNA, downregulates the KYN/RANKL-mediated increase in c-fos and NFATc1 and inhibits the formation of multinucleated TRAP + osteoclasts. Altogether, this work highlights that the novelty of the KYN and AhR pathways might have a potential role in helping to regulate osteoclast function with age and supports pursuing additional research to determine if they are potential therapeutic targets for the prevention or treatment of osteoporosis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Quinurenina/farmacología , Osteogénesis , Ligando RANK/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células RAW 264.7 , Receptores de Hidrocarburo de Aril/genética , Receptores de Glutamato/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Cytokine ; 123: 154783, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31336263

RESUMEN

Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.


Asunto(s)
Huesos/metabolismo , Diferenciación Celular , Quimiocina CXCL12/metabolismo , Músculos/metabolismo , Transducción de Señal , Huesos/patología , Humanos , Músculos/patología , Osteoporosis/metabolismo , Osteoporosis/patología , Receptores CXCR4/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología , Células Madre/metabolismo , Células Madre/patología
8.
Calcif Tissue Int ; 100(6): 599-608, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28246930

RESUMEN

Aging is associated with an increase in circulating inflammatory factors. One, the cytokine stromal cell-derived factor 1 (SDF-1 or CXCL12), is critical to stem cell mobilization, migration, and homing as well as to bone marrow stem cell (BMSC), osteoblast, and osteoclast function. SDF-1 has pleiotropic roles in bone formation and BMSC differentiation into osteoblasts/osteocytes, and in osteoprogenitor cell survival. The objective of this study was to examine the association of plasma SDF-1 in participants in the cardiovascular health study (CHS) with bone mineral density (BMD), body composition, and incident hip fractures. In 1536 CHS participants, SDF-1 plasma levels were significantly associated with increasing age (p < 0.01) and male gender (p = 0.04), but not with race (p = 0.63). In multivariable-adjusted models, higher SDF-1 levels were associated with lower total hip BMD (p = 0.02). However, there was no significant association of SDF-1 with hip fractures (p = 0.53). In summary, circulating plasma levels of SDF-1 are associated with increasing age and independently associated with lower total hip BMD in both men and women. These findings suggest that SDF-1 levels are linked to bone homeostasis.


Asunto(s)
Composición Corporal/fisiología , Densidad Ósea/inmunología , Quimiocina CXCL12/sangre , Fracturas de Cadera/sangre , Anciano , Anciano de 80 o más Años , Envejecimiento , Densidad Ósea/fisiología , Huesos/metabolismo , Enfermedades Cardiovasculares , Femenino , Humanos , Masculino , Osteoclastos/metabolismo , Factores de Riesgo , Factores Sexuales
9.
Calcif Tissue Int ; 95(2): 174-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25000990

RESUMEN

We had shown that aromatic amino acid (phenylalanine, tyrosine, and tryptophan) supplementation prevented bone loss in an aging C57BL/6 mice model. In vivo results from the markers of bone breakdown suggested an inhibition of osteoclastic activity or differentiation. To assess osteoclastic differentiation, we examined the effects of aromatic amino acids on early /structural markers as vitronectin receptor, calcitonin receptor, and carbonic anhydrase II as well as, late/functional differentiation markers; cathepsin K and matrix metalloproteinase 9 (MMP-9). Our data demonstrate that the aromatic amino acids down-regulated early and late osteoclastic differentiation markers as measured by real time PCR. Our data also suggest a link between the vitronectin receptor and the secreted cathepsin K that both showed consistent effects to the aromatic amino acid treatment. However, the non-attachment related proteins, calcitonin receptor, and carbonic anhydrase II, demonstrated less consistent effects in response to treatment. Our data are consistent with aromatic amino acids down-regulating osteoclastic differentiation by suppressing remodeling gene expression thus contributing initially to the net increase in bone mass seen in vivo.


Asunto(s)
Aminoácidos Aromáticos/farmacología , Osteoclastos/efectos de los fármacos , Fenilalanina/farmacología , Triptófano/farmacología , Tirosina/farmacología , Animales , Resorción Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Dieta , Suplementos Dietéticos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Int J Tryptophan Res ; 17: 11786469241246674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757095

RESUMEN

Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is crucial in maintaining the skeletal system. Our study focuses on encapsulating the role of AhR in bone biology and identifying novel signaling pathways in musculoskeletal pathologies using the GEO dataset. The GEO2R analysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the AhR pathway, which play a pivotal role in bone remodeling. The AhR knockout in hematopoietic stem cells showed alteration in several novel bone-related transcriptomes (eg, Defb14, ZNF 51, and Chrm5). Gene Ontology Enrichment Analysis demonstrated 54 different biological processes associated with bone homeostasis. Mainly, these processes include bone morphogenesis, bone development, bone trabeculae formation, bone resorption, bone maturation, bone mineralization, and bone marrow development. Employing Functional Annotation and Clustering through DAVID, we further uncovered the involvement of the xenobiotic metabolic process, p450 pathway, oxidation-reduction, and nitric oxide biosynthesis process in the AhR signaling pathway. The conflicting evidence of current research of AhR signaling on bone (positive and negative effects) homeostasis may be due to variations in ligand binding affinity, binding sites, half-life, chemical structure, and other unknown factors. In summary, our study provides a comprehensive understanding of the underlying mechanisms of the AhR pathway in bone biology.

11.
Int J Oncol ; 62(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36524361

RESUMEN

The epidermal growth factor receptor (EGFR) is commonly upregulated in multiple cancer types, including breast cancer. In the present study, evidence is provided in support of the premise that upregulation of the EGFR/MEK1/MAPK1/2 signaling axis during antiestrogen treatment facilitates the escape of breast cancer cells from BimEL­dependent apoptosis, conferring resistance to therapy. This conclusion is based on the findings that ectopic BimEL cDNA overexpression and confocal imaging studies confirm the pro­apoptotic role of BimEL in ERα expressing breast cancer cells and that upregulated EGFR/MEK1/MAPK1/2 signaling blocks BimEL pro­apoptotic action in an antiestrogen­resistant breast cancer cell model. In addition, the present study identified a pro­survival role for autophagy in antiestrogen resistance while EGFR inhibitor studies demonstrated that a significant percentage of antiestrogen­resistant breast cancer cells survive EGFR targeting by pro­survival autophagy. These pre­clinical studies establish the possibility that targeting both the MEK1/MAPK1/2 signaling axis and pro­survival autophagy may be required to eradicate breast cancer cell survival and prevent the development of antiestrogen resistance following hormone treatments. The present study uniquely identified EGFR upregulation as one of the mechanisms breast cancer cells utilize to evade the cytotoxic effects of antiestrogens mediated through BimEL­dependent apoptosis.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Resistencia a Antineoplásicos , Moduladores de los Receptores de Estrógeno , Femenino , Humanos , Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2/efectos de los fármacos , Proteína 11 Similar a Bcl2/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Moduladores de los Receptores de Estrógeno/farmacología , Moduladores de los Receptores de Estrógeno/uso terapéutico , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Regulación hacia Arriba , Transducción de Señal
12.
Aging Dis ; 14(6): 2303-2316, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199586

RESUMEN

Emerging evidence shows that the microRNA-141-3p is involved in various age-related pathologies. Previously, our group and others reported elevated levels of miR-141-3p in several tissues and organs with age. Here, we inhibited the expression of miR-141-3p using antagomir (Anti-miR-141-3p) in aged mice and explored its role in healthy aging. We analyzed serum (cytokine profiling), spleen (immune profiling), and overall musculoskeletal phenotype. We found decreased levels of pro-inflammatory cytokines (such as TNF-α, IL-1ß, IFN-γ) in serum with Anti-miR-141-3p treatment. The flow-cytometry analysis on splenocytes revealed decreased M1 (pro-inflammatory) and increased M2 (anti-inflammatory) populations. We also found improved bone microstructure and muscle fiber size with Anti-miR-141-3p treatment. Molecular analysis revealed that miR-141-3p regulates the expression of AU-rich RNA-binding factor 1 (AUF1) and promotes senescence (p21, p16) and pro-inflammatory (TNF-α, IL-1ß, IFN-γ) environment whereas inhibiting miR-141-3p prevents these effects. Furthermore, we demonstrated that the expression of FOXO-1 transcription factor was reduced with Anti-miR-141-3p and elevated with silencing of AUF1 (siRNA-AUF1), suggesting crosstalk between miR-141-3p and FOXO-1. Overall, our proof-of-concept study demonstrates that inhibiting miR-141-3p could be a potential strategy to improve immune, bone, and muscle health with age.

13.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36413391

RESUMEN

Antibiotic-induced shifts in the indigenous gut microbiota influence normal skeletal maturation. Current theory implies that gut microbiota actions on bone occur through a direct gut/bone signaling axis. However, our prior work supports that a gut/liver signaling axis contributes to gut microbiota effects on bone. Our purpose was to investigate the effects of minocycline, a systemic antibiotic treatment for adolescent acne, on pubertal/postpubertal skeletal maturation. Sex-matched specific pathogen-free (SPF) and germ-free (GF) C57BL/6T mice were administered a clinically relevant minocycline dose from age 6-12 weeks. Minocycline caused dysbiotic shifts in the gut bacteriome and impaired skeletal maturation in SPF mice but did not alter the skeletal phenotype in GF mice. Minocycline administration in SPF mice disrupted the intestinal farnesoid X receptor/fibroblast growth factor 15 axis, a gut/liver endocrine axis supporting systemic bile acid homeostasis. Minocycline-treated SPF mice had increased serum conjugated bile acids that were farnesoid X receptor (FXR) antagonists, suppressed osteoblast function, decreased bone mass, and impaired bone microarchitecture and fracture resistance. Stimulating osteoblasts with the serum bile acid profile from minocycline-treated SPF mice recapitulated the suppressed osteogenic phenotype found in vivo, which was mediated through attenuated FXR signaling. This work introduces bile acids as a potentially novel mediator of gut/liver signaling actions contributing to gut microbiota effects on bone.


Asunto(s)
Minociclina , Osteogénesis , Animales , Ratones , Antibacterianos/efectos adversos , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Minociclina/farmacología
14.
Bone ; 173: 116811, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37244427

RESUMEN

Kynurenine (Kyn) is a tryptophan metabolite that increases with age and promotes musculoskeletal dysfunction. We previously found a sexually dimorphic pattern in how Kyn affects bone, with harmful effects more prevalent in females than males. This raises the possibility that male sex steroids might exert a protective effect that blunts the effects of Kyn in males. To test this, orchiectomy (ORX) or sham surgeries were performed on 6-month-old C57BL/6 mice, after which mice received Kyn (10 mg/kg) or vehicle via intraperitoneal injection, once daily, 5×/week, for four weeks. Bone histomorphometry, DXA, microCT, and serum marker analyses were performed after sacrifice. In vitro studies were performed to specifically test the effect of testosterone on activation of aryl hydrocarbon receptor (AhR)-mediated signaling by Kyn in mesenchymal-lineage cells. Kyn treatment reduced cortical bone mass in ORX- but not sham-operated mice. Trabecular bone was unaffected. Kyn's effects on cortical bone in ORX mice were attributed primarily to enhanced endosteal bone resorption activity. Bone marrow adipose tissue was increased in Kyn-treated ORX animals but was unchanged by Kyn in sham-operated mice. ORX surgery increased mRNA expression of the aryl hydrocarbon receptor (AhR) and its target gene Cyp1a1 in the bone, suggesting a priming and/or amplification of AhR signaling pathways. Mechanistic in vitro studies revealed that testosterone blunted Kyn-stimulated AhR transcriptional activity and Cyp1a1 expression in mesenchymal-linage cells. These data suggest a protective role for male sex steroids in blunting the harmful effects of Kyn in cortical bone. Therefore, testosterone may play an important role in regulating Kyn/AhR signaling in musculoskeletal tissues, suggesting crosstalk between male sex steroids and Kyn signaling may influence age-associated musculoskeletal frailty.


Asunto(s)
Quinurenina , Receptores de Hidrocarburo de Aril , Femenino , Ratones , Masculino , Animales , Quinurenina/metabolismo , Quinurenina/farmacología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Orquiectomía , Citocromo P-450 CYP1A1 , Ratones Endogámicos C57BL , Hueso Cortical/metabolismo , Testosterona/farmacología
15.
ACS Pharmacol Transl Sci ; 6(1): 22-39, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36659961

RESUMEN

Bone marrow skeletal stem cells (SSCs) secrete many cytokines including stromal derived factor-1 or CXCL12, which influences cell proliferation, migration, and differentiation. All CXCL12 splice variants are rapidly truncated on their N-terminus by dipeptidyl peptidase 4 (DPP4). This includes the common variant CXCL12 alpha (1-68) releasing a much less studied metabolite CXCL12(3-68). Here, we found that CXCL12(3-68) significantly inhibited SSC osteogenic differentiation and RAW-264.7 cell osteoclastogenic differentiation and induced a senescent phenotype in SSCs. Importantly, pre-incubation of SSCs with CXCL12(3-68) significantly diminished their ability to migrate toward CXCL12(1-68) in transwell migration assays. Using a high-throughput G-protein-coupled receptor (GPCR) screen (GPCRome) and bioluminescent resonance energy transfer molecular interaction assays, we revealed that CXCL12(3-68) acts via the atypical cytokine receptor 3-mediated ß-arrestin recruitment and as a competitive antagonist to CXCR4-mediated signaling. Finally, a reverse phase protein array assay revealed that DPP4-cleaved CXCL12 possesses a different downstream signaling profile from that of intact CXCL12 or controls. The data presented herein provides insights into regulation of CXCL12 signaling. Importantly, it demonstrates that DPP4 proteolysis of CXCL12 generates a metabolite with significantly different and previously overlooked bioactivity that helps explain discrepancies in the literature. This also contributes to an understanding of the molecular mechanisms of osteoporosis and bone fracture repair and could potentially significantly affect the interpretation of experimental outcomes with clinical consequences in other fields where CXCL12 is vital, including cancer biology, immunology, cardiovascular biology, neurobiology, and associated pathologies.

16.
Stroke ; 43(10): 2794-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22910893

RESUMEN

BACKGROUND AND PURPOSE: Remote ischemic conditioning is cardioprotective in myocardial infarction and neuroprotective in mechanical occlusion models of stroke. However, there is no report on its therapeutic potential in a physiologically relevant embolic stroke model (embolic middle cerebral artery occlusion) in combination with intravenous tissue-type plasminogen activator (tPA). METHODS: We tested remote ischemic perconditioning therapy (RIPerC) at 2 hours after embolic middle cerebral artery occlusion in the mouse with and without intravenous tPA at 4 hours. We assessed cerebral blood flow up to 6 hours, neurological deficits, injury size, and phosphorylation of Akt (Serine(473)) as a prosurvival signal in the ischemic hemisphere at 48 hours poststroke. RESULTS: RIPerC therapy alone improved the cerebral blood flow and neurological outcomes. tPA alone at 4 hours did not significantly improve the neurological outcome even after successful thrombolysis. Individual treatments with RIPerC and intravenous tPA reduced the infarct size (25.7% and 23.8%, respectively). Combination therapy of RIPerC and tPA resulted in additive effects in further improving the neurological outcome and reducing the infarct size (50%). All the therapeutic treatments upregulated phosphorylation of Akt in the ischemic hemisphere. CONCLUSIONS: RIPerC is effective alone after embolic middle cerebral artery occlusion and has additive effects in combination with intravenous tPA. RIPerC may be a simple, safe, and inexpensive combination therapy with intravenous tPA.


Asunto(s)
Infarto de la Arteria Cerebral Media/complicaciones , Precondicionamiento Isquémico/métodos , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/terapia , Terapia Trombolítica/métodos , Activador de Tejido Plasminógeno/uso terapéutico , Administración Intravenosa , Animales , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Terapia Combinada , Fibrinolíticos/administración & dosificación , Fibrinolíticos/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Flujo Sanguíneo Regional/fisiología , Accidente Cerebrovascular/patología , Factores de Tiempo , Activador de Tejido Plasminógeno/administración & dosificación , Resultado del Tratamiento
17.
J Mol Endocrinol ; 69(3): R109-R124, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35900841

RESUMEN

The aryl hydrocarbon receptor (AhR) has been implicated in regulating skeletal progenitor cells and the activity of bone-forming osteoblasts and bone-resorbing osteoclasts, thereby impacting bone mass and the risk of skeletal fractures. The AhR also plays an important role in the immune system within the skeletal niche and in the differentiation of mesenchymal stem cells into other cell lineages including chondrocytes and adipocytes. This transcription factor responds to environmental pollutants which can act as AhR ligands, initiating or interfering with various signaling cascades to mediate downstream effects, and also responds to endogenous ligands including tryptophan metabolites. This review comprehensively describes the reported roles of the AhR in skeletal cell biology, focusing on mesenchymal stem cells, osteoblasts, and osteoclasts, and discusses how AhR exhibits sexually dimorphic effects in bone. The molecular mechanisms mediating AhR's downstream effects are highlighted to emphasize the potential importance of targeting this signaling cascade in skeletal disorders.


Asunto(s)
Osteoclastos , Receptores de Hidrocarburo de Aril , Diferenciación Celular , Ligandos , Osteoclastos/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal
18.
Am J Physiol Renal Physiol ; 301(1): F162-70, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21511696

RESUMEN

Granulocyte colony-stimulating factor (G-CSF) is renoprotective during acute kidney injury (AKI) induced by ischemia and cisplatin nephrotoxicity; however, the underlying mechanism is not entirely clear. Rhabdomyolysis is another important clinical cause of AKI, due to the release of nephrotoxins (e.g., heme) from disrupted muscles. The current study has determined the effects of G-CSF on rhabdomyolysis-associated AKI using in vivo and in vitro models. In C57BL/6 mice, intramuscular injection of glycerol induced AKI, which was partially prevented by G-CSF pretreatment. Consistently, glycerol-induced renal tissue damage was ameliorated by G-CSF. In addition, animal survival following the glycerol injection was improved from ∼30 to ∼70% by G-CSF. In cultured renal tubular cells, hemin-induced apoptosis was also suppressed by G-CSF. Interestingly, G-CSF induced heme oxygenase-1 (HO-1, a critical enzyme for heme/hemin degradation and detoxification) in both cultured tubular cells and mouse kidneys. Blockade of HO-1 with protoporphyrin IX zinc(II) (ZnPP) could largely diminish the protective effects of G-CSF. Together, these results demonstrated the renoprotective effects of G-CSF in rhabdomyolysis-associated AKI. Notably, G-CSF may directly protect against tubular cell injury under the disease condition by inducing HO-1.


Asunto(s)
Lesión Renal Aguda/prevención & control , Factor Estimulante de Colonias de Granulocitos/farmacología , Hemo-Oxigenasa 1/biosíntesis , Rabdomiólisis/prevención & control , Lesión Renal Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Células de la Médula Ósea/efectos de los fármacos , Caspasas/metabolismo , Diferenciación Celular/efectos de los fármacos , Quimera , Inducción Enzimática/fisiología , Hemo-Oxigenasa 1/antagonistas & inhibidores , Hemo-Oxigenasa 1/fisiología , Hemina/farmacología , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Riñón/patología , Pruebas de Función Renal , Túbulos Renales/citología , Túbulos Renales/efectos de los fármacos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rabdomiólisis/inducido químicamente , Rabdomiólisis/patología , Sobrevida
19.
Magn Reson Med ; 65(5): 1430-6, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21287590

RESUMEN

How stem cells promote myocardial repair in myocardial infarction (MI) is not well understood. The purpose of this study was to noninvasively monitor and quantify mesenchymal stem cells (MSC) from bone marrow to MI sites using magnetic resonance imaging (MRI). MSC were dual-labeled with an enhanced green fluorescent protein and micrometer-sized iron oxide particles prior to intra-bone marrow transplantation into the tibial medullary space of C57Bl/6 mice. Micrometer-sized iron oxide particles labeling caused signal attenuation in T(2)*-weighted MRI and thus allowed noninvasive cell tracking. Longitudinal MRI demonstrated MSC infiltration into MI sites over time. Fluorescence from both micrometer-sized iron oxide particles and enhanced green fluorescent protein in histology validated the presence of dual-labeled cells at MI sites. This study demonstrated that MSC traffic to MI sites can be noninvasively monitored in MRI by labeling cells with micrometer-sized iron oxide particles. The dual-labeled MSC at MI sites maintained their capability of proliferation and differentiation. The dual-labeling, intra-bone marrow transplantation, and MRI cell tracking provided a unique approach for investigating stem cells' roles in the post-MI healing process. This technique can potentially be applied to monitor possible effects on stem cell mobilization caused by given treatment strategies.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Trasplante de Células Madre Mesenquimatosas , Infarto del Miocardio/terapia , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología
20.
Bone ; 142: 115679, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33022453

RESUMEN

MicroRNAs (miRNAs) have recently come under scrutiny for their role in various age-related diseases. Similarly, cellular senescence has been linked to disease and aging. MicroRNAs and senescence likely play an intertwined role in driving these pathologic states. In this review, we present the connection between these two drivers of age-related disease concerning mesenchymal stem cells (MSCs). First, we summarize key miRNAs that are differentially expressed in MSCs and other musculoskeletal lineage cells during senescence and aging. Additionally, we also reviewed miRNAs that are regulated via traditional senescence-associated secretory phenotype (SASP) cytokines in MSC. Lastly, we summarize miRNAs that have been found to target components of the cell cycle arrest pathways inherently activated in senescence. This review attempts to highlight potential miRNA targets for regenerative medicine applications in age-related musculoskeletal disease.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Senescencia Celular/genética , Citocinas , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA