Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heredity (Edinb) ; 129(2): 123-136, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35314789

RESUMEN

As anthropogenic disturbances continue to drive habitat loss and range contractions, the maintenance of evolutionary processes will increasingly require targeting measures to the population level, even for common and widespread species. Doing so requires detailed knowledge of population genetic structure, both to identify populations of conservation need and value, as well as to evaluate suitability of potential donor populations. We conducted a range-wide analysis of the genetic structure of red foxes in the contiguous western U.S., including a federally endangered distinct population segment of the Sierra Nevada subspecies, with the objectives of contextualizing field observations of relative scarcity in the Pacific mountains and increasing abundance in the cold desert basins of the Intermountain West. Using 31 autosomal microsatellites, along with mitochondrial and Y-chromosome markers, we found that populations of the Pacific mountains were isolated from one another and genetically depauperate (e.g., estimated Ne range = 3-9). In contrast, red foxes in the Intermountain regions showed relatively high connectivity and genetic diversity. Although most Intermountain red foxes carried indigenous western matrilines (78%) and patrilines (85%), the presence of nonindigenous haplotypes at lower elevations indicated admixture with fur-farm foxes and possibly expanding midcontinent populations as well. Our findings suggest that some Pacific mountain populations could likely benefit from increased connectivity (i.e., genetic rescue) but that nonnative admixture makes expanding populations in the Intermountain basins a non-ideal source. However, our results also suggest contact between Pacific mountain and Intermountain basin populations is likely to increase regardless, warranting consideration of risks and benefits of proactive measures to mitigate against unwanted effects of Intermountain gene flow.


Asunto(s)
Zorros , Repeticiones de Microsatélite , Animales , Zorros/genética , Flujo Génico , Marcadores Genéticos , Variación Genética , Haplotipos , Estados Unidos
2.
J Environ Manage ; 92(5): 1354-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21126817

RESUMEN

Within the field of natural-resources management, the application of adaptive management is appropriate for complex problems high in uncertainty. Adaptive management is becoming an increasingly popular management-decision tool within the scientific community and has developed into two primary schools of thought: the Resilience-Experimentalist School (with high emphasis on stakeholder involvement, resilience, and highly complex models) and the Decision-Theoretic School (which results in relatively simple models through emphasizing stakeholder involvement for identifying management objectives). Because of these differences, adaptive management plans implemented under each of these schools may yield varying levels of success. We evaluated peer-reviewed literature focused on incorporation of adaptive management to identify components of successful adaptive management plans. Our evaluation included adaptive management elements such as stakeholder involvement, definitions of management objectives and actions, use and complexity of predictive models, and the sequence in which these elements were applied. We also defined a scale of degrees of success to make comparisons between the two adaptive management schools of thought. Our results include the relationship between the adaptive management process documented in the reviewed literature and our defined continuum of successful outcomes. Our data suggest an increase in the number of published articles with substantive discussion of adaptive management from 2000 to 2009 at a mean rate of annual change of 0.92 (r² = 0.56). Additionally, our examination of data for temporal patterns related to each school resulted in an increase in acknowledgement of the Decision-Theoretic School of thought at a mean annual rate of change of 0.02 (r² = 0.6679) and a stable acknowledgement for the Resilience-Experimentalist School of thought (r² = 0.0042; slope = 0.0013). Identifying the elements of successful adaptive management will be advantageous to natural-resources managers considering adaptive management as a decision tool.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Toma de Decisiones , Teoría de las Decisiones , Ambiente , Incertidumbre , Objetivos , Modelos Teóricos , Medio Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA