RESUMEN
Mountain uplift and erosion have regulated the balance of carbon between Earth's interior and atmosphere, where prior focus has been placed on the role of silicate mineral weathering in CO2 drawdown and its contribution to the stability of Earth's climate in a habitable state1-5. However, weathering can also release CO2 as rock organic carbon (OCpetro) is oxidized at the near surface6,7; this important geological CO2 flux has remained poorly constrained3,8. We use the trace element rhenium in combination with a spatial extrapolation model to quantify this flux across global river catchments3,9. We find a CO2 release of [Formula: see text] megatons of carbon annually from weathering of OCpetro in near-surface rocks, rivalling or even exceeding the CO2 drawdown by silicate weathering at the global scale10. Hotspots of CO2 release are found in mountain ranges with high uplift rates exposing fine-grained sedimentary rock, such as the eastern Himalayas, the Rocky Mountains and the Andes. Our results demonstrate that OCpetro is far from inert and causes weathering in regions to be net sources or sinks of CO2. This raises questions, not yet fully studied, as to how erosion and weathering drive the long-term carbon cycle and contribute to the fine balance of carbon fluxes between the atmosphere, biosphere and lithosphere2,11.
RESUMEN
The oxidation of organic carbon contained within sedimentary rocks ("petrogenic" carbon, or hereafter OCpetro) emits nearly as much CO2 as is released by volcanism, thereby playing a key role in the long-term global C budget. High erosion rates in mountains have been shown to increase OCpetro oxidation. However, these settings also export unweathered material that may continue to react in downstream floodplains. The relative importance of OCpetro oxidation in mountains versus floodplains remains difficult to assess as disparate methods have been used in the different environments. Here, we investigate the sources and fluxes of rhenium (Re) in the Rio Madre de Dios to quantify OCpetro oxidation from the Andes to the Amazon floodplain using a common approach. Dissolved rhenium concentrations (n = 131) range from 0.01 to 63 pmol L-1 and vary depending on lithology and geomorphic setting. We find that >75% of the dissolved Re derives from OCpetro oxidation and that this proportion increases downstream. We estimate that in the Andes, OCpetro oxidation releases 11.2+4.5/-2.8 tC km-2 y-1 of CO2, which corresponds to ~41% of the total OCpetro denudation (sum of oxidized and solid OCpetro). A Re mass balance across the Rio Madre de Dios shows that 46% of OCpetro oxidation takes place in the Andes, 14% in the foreland-lowlands, and 40% in the Andean-fed floodplains. This doubling of OCpetro oxidation flux downstream of the Andes demonstrates that, when present, floodplains can greatly increase OCpetro oxidation and CO2 release.
RESUMEN
Rivers carry the dissolved and solid products of silicate mineral weathering, a process that removes [Formula: see text] from the atmosphere and provides a key negative climate feedback over geological timescales. Here we show that, in some river systems, a reactive exchange pool on river suspended particulate matter, bonded weakly to mineral surfaces, increases the mobile cation flux by 50%. The chemistry of both river waters and the exchange pool demonstrates exchange equilibrium, confirmed by Sr isotopes. Global silicate weathering fluxes are calculated based on riverine dissolved sodium (Na+) from silicate minerals. The large exchange pool supplies Na+ of nonsilicate origin to the dissolved load, especially in catchments with widespread marine sediments, or where rocks have equilibrated with saline basement fluids. We quantify this by comparing the riverine sediment exchange pool and river water chemistry. In some basins, cation exchange could account for the majority of sodium in the river water, significantly reducing estimates of silicate weathering. At a global scale, we demonstrate that silicate weathering fluxes are overestimated by 12 to 28%. This overestimation is greatest in regions of high erosion and high sediment loads where the negative climate feedback has a maximum sensitivity to chemical weathering reactions. In the context of other recent findings that reduce the net [Formula: see text] consumption through chemical weathering, the magnitude of the continental silicate weathering fluxes and its implications for solid Earth [Formula: see text] degassing fluxes need to be further investigated.
RESUMEN
Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.
Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/análisis , Secuestro de Carbono , Carbono/análisis , Regiones Árticas , Atmósfera/química , Monitoreo del Ambiente , Sedimentos Geológicos/química , Material Particulado/análisis , Material Particulado/química , Ríos/química , Silicatos/análisis , Suelo/química , Factores de Tiempo , Clima TropicalRESUMEN
Permafrost thaw in Arctic watersheds threatens to mobilize hitherto sequestered carbon. We examine the radiocarbon activity (F14C) of dissolved organic carbon (DOC) in the northern Mackenzie River basin. From 2003-2017, DOC-F14C signatures (1.00 ± 0.04; n = 39) tracked atmospheric 14CO2, indicating export of "modern" carbon. This trend was interrupted in June 2018 by the widespread release of aged DOC (0.85 ± 0.16, n = 28) measured across three separate catchment areas. Increased nitrate concentrations in June 2018 lead us to attribute this pulse of 14C-depleted DOC to mobilization of previously frozen soil organic matter. We propose export through lateral perennial thaw zones that occurred at the base of the active layer weakened by preceding warm summer and winter seasons. Although we are not yet able to ascertain the broader significance of this "anomalous" mobilization event, it highlights the potential for rapid and large-scale release of aged carbon from permafrost.
RESUMEN
Process-based, mechanistic investigations of organic matter transformation and diagenesis directly beneath the sediment-water interface (SWI) in Arctic continental shelves are vital as these regions are at greatest risk of future change. This is in part due to disruptions in benthic-pelagic coupling associated with ocean current change and sea ice retreat. Here, we focus on a high-resolution, multi-disciplinary set of measurements that illustrate how microbial processes involved in the degradation of organic matter are directly coupled with inorganic and organic geochemical sediment properties (measured and modelled) as well as the extent/depth of bioturbation. We find direct links between aerobic processes, reactive organic carbon and highest abundances of bacteria and archaea in the uppermost layer (0-4.5 cm depth) followed by dominance of microbes involved in nitrate/nitrite and iron/manganese reduction across the oxic-anoxic redox boundary (approx. 4.5-10.5 cm depth). Sulfate reducers dominate in the deeper (approx. 10.5-33 cm) anoxic sediments which is consistent with the modelled reactive transport framework. Importantly, organic matter reactivity as tracked by organic geochemical parameters (n-alkanes, n-alkanoic acids, n-alkanols and sterols) changes most dramatically at and directly below the SWI together with sedimentology and biological activity but remained relatively unchanged across deeper changes in sedimentology. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
Asunto(s)
Ecosistema , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Compuestos Orgánicos/análisis , Agua de Mar/química , Agua de Mar/microbiología , Regiones Árticas , Biotransformación , Ciclo del Carbono , Cambio Climático , Bases de Datos Factuales , Fenómenos Microbiológicos , Noruega , Océanos y Mares , Oxidación-ReducciónRESUMEN
The Canadian Arctic is warming at an unprecedented rate. Warming-induced permafrost thaw can lead to mobilization of aged carbon from stores in soils and rocks. Tracking the carbon pools supplied to surrounding river networks provides insight on pathways and processes of greenhouse gas release. Here, we investigated the dual-carbon isotopic characteristics of the dissolved inorganic carbon (DIC) pool in the main stem and tributaries of the Mackenzie River system. The radiocarbon (14C) activity of DIC shows export of "old" carbon (2,380 ± 1,040 14C years BP on average) occurred during summer in sampling years. The stable isotope composition of river DIC implicates degassing of aged carbon as CO2 from riverine tributaries during transport to the delta; however, information on potential drivers and fluxes are still lacking. Accounting for stable isotope fractionation during CO2 loss, we show that a large proportion of this aged carbon (60 ± 10%) may have been sourced from biospheric organic carbon oxidation, with other inputs from carbonate weathering pathways and atmospheric exchange. The findings highlight hydrologically connected waters as viable pathways for mobilization of aged carbon pools from Arctic permafrost soils.
RESUMEN
Oxidative weathering of sulfide minerals in sedimentary rocks releases carbon dioxide (CO2) into the atmosphere. In permafrost zones, this could be a positive feedback on climate change if it increases with warming, yet sulfide oxidation rates and their temperature response remain unknown over large spatial and temporal scales. We analyze a 60-year sulfate concentration dataset from catchments across the Mackenzie River Basin. Sulfate fluxes increased by 45% in the mainstem with 2.3°C of warming, and the temperature sensitivity suggests that continental-scale CO2 fluxes could double by 2100. The largest increases occur in catchments with geomorphic settings which act to rapidly expose rocks through physical weathering and thermokarst processes. Comparisons with a weathering model suggest that warming can increase reaction rates, and changes in the exposure of minerals with warming are also required. Future warming across vast Arctic landscapes could further increase sulfide oxidation rates and affect regional carbon cycle budgets.
RESUMEN
Submarine turbidity currents form the largest sediment accumulations on Earth, raising the question of their role in global carbon cycles. It was previously inferred that terrestrial organic carbon was primarily incinerated on shelves and that most turbidity current systems are presently inactive. Turbidity currents were thus not considered in global carbon cycles, and the burial efficiency of global terrestrial organic carbon was considered low to moderate (â¼10-44%). However, recent work has shown that burial of terrestrial organic carbon by turbidity currents is highly efficient (>60-100%) in a range of settings and that flows occur more frequently than once thought, although they were far more active at sea-level lowstands. This leads to revised global estimates for mass flux (â¼62-90 Mt C/year) and burial efficiency (â¼31-45%) of terrestrial organic carbon in marine sediments. Greatly increased burial fluxes during sea-level lowstands are also likely underestimated; thus, organic carbon cycling by turbidity currents could play a role in long-term changes in atmospheric CO2 and climate.
Asunto(s)
Ciclo del Carbono , Clima , CarbonoRESUMEN
The dependence of rock weathering on temperature helps to steer Earth's climate.
RESUMEN
Much attention has been focused on fine-grained sediments carried as suspended load in rivers due to their potential to transport, disperse, and preserve organic carbon (OC), while the transfer and fate of OC associated with coarser-grained sediments in fluvial systems have been less extensively studied. Here, sedimentological, geochemical, and biomolecular characteristics of sediments from river depth profiles reveal distinct hydrodynamic behavior for different pools of OC within the Mackenzie River system. Higher radiocarbon (14C) contents, low N/OC ratios, and elevated plant-derived biomarker loadings suggest a systematic transport of submerged vascular plant debris above the active riverbed in large channels both upstream of and within the delta. Subzero temperatures hinder OC degradation promoting the accumulation and waterlogging of plant detritus within the watershed. Once entrained into a channel, sustained flow strength and buoyancy prevent plant debris from settling and keep it suspended in the water column above the riverbed. Helical flow motions within meandering river segments concentrate lithogenic and organic debris near the inner river bends forming a sediment-laden plume. Moving offshore, we observe a lack of discrete, particulate OC in continental shelf sediments, suggesting preferential trapping of coarse debris within deltaic and neritic environments. The delivery of waterlogged plant detritus transport and high sediment loads during the spring flood may reduce oxygen exposure times and microbial decomposition, leading to enhanced sequestration of biospheric OC. Undercurrents enriched in coarse, relatively fresh plant fragments appear to be reoccurring features, highlighting a poorly understood yet significant mechanism operating within the terrestrial carbon cycle.
RESUMEN
Seawater lithium isotopes (δ7Li) record changes over Earth history, including a â¼9 increase during the Cenozoic interpreted as reflecting either a change in continental silicate weathering rate or weathering feedback strength, associated with tectonic uplift. However, mechanisms controlling the dissolved δ7Li remain debated. Here we report time-series δ7Li measurements from Tibetan and Pamir rivers, and combine them with published seasonal data, covering small (<102 km2) to large rivers (>106 km2). We find seasonal changes in δ7Li across all latitudes: dry seasons consistently have higher δ7Li than wet seasons, by -0.3 to 16.4 (mean 5.0 ± 2.5). A globally negative correlation between δ7Li and annual runoff reflects the hydrological intensity operating in catchments, regulating water residence time and δ7Li values. This hydrological control on δ7Li is consistent across climate events back to ~445 Ma. We propose that hydrological changes result in shifts in river δ7Li and urge reconsideration of its use to examine past weathering intensity and flux, opening a new window to reconstruct hydrological conditions.
RESUMEN
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.
Asunto(s)
Ecosistema , Sedimentos Geológicos , Regiones Árticas , Cambio Climático , Cubierta de HieloRESUMEN
Widespread triggering of landslides by large storms or earthquakes is a dominant mechanism of erosion in mountain landscapes. If landslides occur repeatedly in particular locations within a mountain range, then they will dominate the landscape evolution of that section and could leave a fingerprint in the topography. Here, we track erosion provenance using a novel combination of the isotopic and molecular composition of organic matter deposited in Lake Paringa, New Zealand. We find that the erosion provenance has shifted markedly after four large earthquakes over 1000 years. Postseismic periods eroded organic matter from a median elevation of 722 +329/-293 m and supplied 43% of the sediment in the core, while interseismic periods sourced from lower elevations (459 +256/-226 m). These results are the first demonstration that repeated large earthquakes can consistently focus erosion at high elevations, while interseismic periods appear less effective at modifying the highest parts of the topography.
RESUMEN
Infrequent extreme events such as large earthquakes pose hazards and have lasting impacts on landscapes and biogeochemical cycles. Sediments provide valuable records of past events, but unambiguously identifying event deposits is challenging because of nonlinear sediment transport processes and poor age control. Here, we have been able to directly track the propagation of a tectonic signal into stratigraphy using reservoir sediments from before and after the 2008 Wenchuan earthquake. Cycles in magnetic susceptibility allow us to define a precise annual chronology and identify the timing and nature of the earthquake's sedimentary record. The grain size and Rb/Sr ratio of the sediments responded immediately to the earthquake. However, the changes were muted until 2 years after the event, when intense monsoonal runoff drove accumulation of coarser grains and lower Rb/Sr sediments. The delayed response provides insight into how climatic and tectonic agents interact to control sediment transfer and depositional processes.
RESUMEN
Lithospheric organic carbon ("petrogenic"; OCpetro) is oxidized during exhumation and subsequent erosion of mountain ranges. This process is a considerable source of carbon dioxide (CO2) to the atmosphere over geologic time scales, but the mechanisms that govern oxidation rates in mountain landscapes are poorly constrained. We demonstrate that, on average, 67 ± 11% of the OCpetro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized in soils, leading to CO2 emissions of 6.1 to 18.6 metric tons of carbon per square kilometer per year. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OCpetro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO2 emission fluxes that increase with erosion rate, thereby counteracting CO2 drawdown by silicate weathering and biospheric OC burial.
Asunto(s)
Carbono/metabolismo , Compuestos Orgánicos/metabolismo , Microbiología del Suelo , Suelo/química , Dióxido de Carbono/metabolismo , Oxidación-Reducción , TaiwánRESUMEN
Over millions of years, the oxidation of organic carbon contained within sedimentary rocks is one of the main sources of carbon dioxide to the atmosphere, yet the controls on this emission remain poorly constrained. We use rhenium to track the oxidation of rock-bound organic carbon in the mountain watersheds of New Zealand, where high rates of physical erosion expose rocks to chemical weathering. Oxidative weathering fluxes are two to three times higher in watersheds dominated by valley glaciers and exposed to frost shattering processes, compared to those with less glacial cover; a feature that we also observe in mountain watersheds globally. Consequently, we show that mountain glaciation can result in an atmospheric carbon dioxide source during weathering and erosion, as fresh minerals are exposed for weathering in an environment with high oxygen availability. This provides a counter mechanism against global cooling over geological time scales.