Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477654

RESUMEN

For the first time, details of the spatial and temporal acceptable evolution of the merging process of co-rotating electron vortices in a potential well are successfully captured using a "single-shot method" with a high temporal resolution of 10 µs. Four-electron filaments are trapped inside the Beam eXperiment-Upgrade linear trap [H. Himura, Nucl. Instrum. Methods Phys. Res. A 811, 100 (2016)] with a uniform axial magnetic field and co-axial multi-ring electrodes. Images of non-emitting electron filaments are captured using a high-speed camera with up to 1 000 000 fps, a microchannel plate, a fast-decay phosphor screen of which fluorescence duration is 0.15 µs, and a super fine metallic mesh with an open area ratio of 89%. Images captured every 10 µs clearly show the growth of multiple short-wave instabilities in the wing trailing electron vortices. The experimental methods and measurement techniques presented in this paper can contribute to revealing exactly how small vortices evolve into a large structure or turbulence in a potential well through complex processes.

2.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39072731

RESUMEN

Measurements and simulations show that plasma relaxation processes in the reversed field pinch drive and redistribute both magnetic flux and momentum. To examine this relaxation process, a new 3D Mach B-dot probe has been constructed. This probe collects ion saturation currents through six molybdenum electrodes arranged on the flattened vertices of an octahedron made of boron nitride (BN). The ion saturation current flows through configurable voltage dividers for measurement and returns through one of six selectable return electrodes equally spaced along the 12 cm BN probe arm. In addition, the probe arm houses three B-dot magnetic pickup coils in the BN stalk immediately below to the octahedron, to measure the local magnetic field. Inserted in the Madison Symmetric Torus (MST) during deuterium discharges with 220 kA plasma current, density of 0.8 × 1013 cm-3, the probe collects ion saturation currents with sawtooth-like peaks correlated with relaxation events. This compact octahedral design fitting six Mach electrode surfaces within a 1 cm3 cube will enable future multi-point, multi-field probes compatible with the 1.5 in. ports of MST. Such probes will allow for flow circulation, current, and canonical vorticity to be calculated in the center of the finite difference stencil formed by the measurement locations.

3.
Rev Sci Instrum ; 87(3): 036109, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27036842

RESUMEN

For the first time, images of both ions and electrons appearing on a fluorescent screen attached to a micro-channel plate (MCP) [S. Nakata et al., "Applicability of micro-channel plate followed by phosphor screen to charged particles," Rev. Sci. Instrum. (submitted)] were captured in one attempt. The profile of electrostatic potential applied externally to the MCP with the fluorescent screen was quickly changed using a high-voltage vacuum relay. This method allows consecutive images of ions and electrons to be successfully captured.

4.
Rev Sci Instrum ; 87(6): 063306, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27370446

RESUMEN

This paper experimentally investigates the applicability of a micro-channel plate (MCP) followed by a phosphor screen to charged particles along with a calibration method for estimating the acceptable limit of input particle flux and appropriate operation parameters of a particular MCP. For the first time, plasmas consisting of only lithium ions are injected into the MCP. Despite large ion numbers (Ni) on the order of ≃10(7), no deterioration in the effective gain (αG) of the MCP owing to an excess amount of the extracted charge occurs in a certain range of the amplifier voltage (ΔUM) applied to the MCP. The measured αG nearly agrees with the expected value. However, once ΔUM exceeds a limit value, αG eventually begins to saturate. This is also verified in experiments using pure electron plasmas. An appropriate range of ΔUM is presented to avoid saturation and, finally, derive Ni directly from the secondary electron current outputted from the MCP only after the indispensable calibration.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(3 Pt 2B): 036409, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11909264

RESUMEN

Injection of charged particle beam into a toroidal magnetic trap enables a variety of interesting experiments on non-neutral plasmas. Stationary radial electric field has been produced in a toroidal geometry by injecting electrons continuously. When an electron gun is placed near an X point of magnetic separatrix, the electron beam spreads efficiently through chaotic orbits, and electrons distribute densely in the torus. The current returning back to the gun can be minimized less than 1% of the total emission.

6.
Rev Sci Instrum ; 85(3): 033502, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24689580

RESUMEN

We have developed a two-dimensional (2D) electron temperature (T(e)) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D Te image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T(e) image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

7.
Rev Sci Instrum ; 81(7): 073502, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20687717

RESUMEN

Tangential soft-x ray (SXR) imaging diagnostic has been developed and three-dimensional (3D) structure of the internal magnetic surface has been deduced by comparing the experimental and calculated two-dimensional SXR images in a reversed field pinch. The SXR imaging system, consisting of a MCP, a fluorescent plate, and an intensified charge coupled device camera, has been installed in REversed field pinch of Low-Aspect-ratio eXperiment (RELAX) machine. Major characteristics of an experimental SXR image could be reproduced by numerical calculations of the image using a single island model, suggesting a helical hot core in RELAX. The SXR imaging system could be useful for 3D structural studies when tangential and vertical simultaneous imaging systems would be installed, with appropriate numerical modeling of 3D structure of the magnetic surfaces.

8.
Phys Rev Lett ; 100(6): 065002, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18352482

RESUMEN

The first detailed experimental study of an instability driven by the presence of a finite ion fraction in an electron-rich non-neutral plasma confined on magnetic surfaces is presented. The instability has a poloidal mode number m=1, implying that the parallel force balance of the electron fluid is broken and that the instability involves rotation of the entire plasma, equivalent to ion-resonant instabilities in Penning traps and toroidal field traps. The mode appears when the ion density exceeds approximately 10% of the electron density. The measured frequency decreases with increasing magnetic field strength, and increases with increasing radial electric field, showing that the instability is linked to the E x B flow of the electron plasma. The frequency does not, however, scale exactly with E/B, and it depends on the ion species that is introduced, implying that the instability consists of interacting perturbations of ions and electrons.

9.
Phys Rev Lett ; 92(25 Pt 1): 255005, 2004 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-15245020

RESUMEN

A pure-electron plasma has been confined in a toroidal magnetic-surface configuration for as long as classical diffusion time due to neutral collisions. By controlling the potential of the internal conductor, long-term stable confinement of electrons has been achieved in a toroidal geometry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA