Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artif Organs ; 42(2): 193-199, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29436026

RESUMEN

Bacterial adhesion on three different surfaces: untreated Ti, plasma nitriding, and plasma carbonitriding Ti substrates were investigated. The samples were placed in bacterial cultures of Pseudomonas aeruginosa to assess biofilm formation. The correlation between the amount of bacteria attached to the surface after a lapse of time with nanotopography and physicochemical properties was performed. TiN showed the highest capacity to avoid bacterial adhesion, while presenting intermediate roughness and wettability. Although the surface of TiCN had the highest surface roughness and low contact angle (high wettability), bacterial adhesion was intermediate on this sample. Untreated Ti, even though presenting a smooth surface and low wettability, had the highest tendency to form biofilms.


Asunto(s)
Aleaciones/química , Biopelículas/crecimiento & desarrollo , Nanoestructuras/química , Pseudomonas aeruginosa/fisiología , Titanio/química , Adhesión Bacteriana , Humanos , Infecciones por Pseudomonas/prevención & control , Propiedades de Superficie , Humectabilidad
2.
Pharmaceutics ; 16(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38543218

RESUMEN

Ivermectin (IVM), a widely used drug for parasitic infections, faces formulation and application challenges due to its poor water solubility and limited bioavailability. Pondering the impact of IVM's high partition coefficient value (log P) on its drug release performance, it is relevant to explore whether IVM nanoencapsulation in organic or inorganic nanoparticles would afford comparable enhanced aqueous solubility. To date, the use of inorganic nanoparticles remains an unexplored approach for delivering IVM. Therefore, here we loaded IVM in mesoporous silica particles (IVM-MCM), as inorganic nanomaterial, and in well-known poly(ε-caprolactone) nanocapsules (IVM-NC). IVM-MCM had a well-organized hexagonal mesoporous structure, reduced surface area, and high drug loading of 10% w/w. IVM-NC had a nanometric mean size (196 nm), high encapsulation efficiency (100%), physicochemical stability as an aqueous dispersion, and drug loading of 0.1% w/w. Despite differing characteristics, both nanoencapsulated forms enhance IVM's aqueous intrinsic solubility compared to a crystalline IVM: after 72 h, IVM-MCM and IVM-NC achieve 72% and 78% releases through a dialysis bag, whereas crystalline IVM dispersion achieves only 40% drug diffusion. These results show distinct controlled release profiles, where IVM-NC provides a deeper sustained controlled release over the whole experiment compared to the inorganic nanomaterial (IVM-MCM). Discussing differences, including drug loading and release kinetics, is crucial for optimizing IVM's therapeutic performance. The study design, combined with administration route plans and safety considerations for humans and animals, may expedite the rational optimization of IVM nanoformulations for swift clinical translation.

3.
Pharmaceutics ; 16(3)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38543251

RESUMEN

Malaria is a dangerous tropical disease, with high morbidity in developing countries. The responsible parasite has developed resistance to the existing drugs; therefore, new drug delivery systems are being studied to increase efficacy by targeting hemozoin, a parasite paramagnetic metabolite. Herein, magnetic mesoporous silica (magMCM) was synthesized using iron oxide particles dispersed in the silica structure for magnetically driven behavior. The X-ray diffractogram (XRD) and Mössbauer spectra show patterns corresponding to magnetite and maghemite. Furthermore, Mössbauer spectroscopy revealed superparamagnetic behavior, attributed to single magnetic domains in particles smaller than 10 nm. Even in the presence of iron oxide particles, the hexagonal structure of MCM is clearly identified in XRD (low-angle region) and the channels are visible in TEM images. The drug chloroquine (CQ) was encapsulated by incipient wetness impregnation (magMCM-CQ). The N2 adsorption-desorption isotherms show that CQ molecules were encapsulated in the pores, without completely filling the mesopores. BET surface area values were 630 m2 g-1 (magMCM) and 467 m2 g-1 (magMCM-CQ). Encapsulated CQ exhibited rapid delivery (99% in 3 h) in buffer medium and improved solubility compared to the non-encapsulated drug, attributed to CQ encapsulation in amorphous form. The biocompatibility assessment of magMCM, magMCM-CQ, and CQ against MRC5 non-tumoral lung fibroblasts using the MTT assay after 24 h revealed no toxicity associated with magMCM. On the other hand, the non-encapsulated CQ and magMCM-CQ exhibited comparable dose-response activity, indicating a similar cytotoxic effect.

4.
Food Chem ; 359: 129890, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33934029

RESUMEN

A new support for the immobilization of ß-d-galactosidase from Kluyveromyces lactis was developed, consisting of mesoporous silica/titania with a chitosan coating. This support presents a high available surface area and adequate pore size for optimizing the immobilization efficiency of the enzyme and, furthermore, maintaining its activity. The obtained supported biocatalyst was applied in enzyme hydrolytic activity tests with o-NPG, showing high activity 1223 Ug-1, excellent efficiency (74%), and activity recovery (54%). Tests of lactose hydrolysis in a continuous flow reactor showed that during 14 days operation, the biocatalyst maintained full enzymatic activity. In a batch system, after 15 cycles, it retained approximately 90% of its initial catalytic activity and attained full conversion of the lactose 100% (±12%). Additionally, with the use of the mesoporous silica/titania support, the biocatalyst presented no deformation and fragmentation, in both systems, demonstrating high operational stability and appropriate properties for applications in food manufacturing.


Asunto(s)
Quitosano , Enzimas Inmovilizadas/metabolismo , Kluyveromyces/enzimología , Dióxido de Silicio , Titanio , beta-Galactosidasa/metabolismo , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Hidrólisis , Lactosa/metabolismo
5.
Sci Total Environ ; 759: 143503, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33218802

RESUMEN

The ubiquitous presence of microplastics in the aquatic environment has raised concern about their potential impacts on and risks to the biota. While the presence of microplastics in a marine environment has been well studied, the impact of microplastic contamination in freshwater bodies is understudied. In the present study, baseline data about contamination with microplastics in Lake Guaíba in southern Brazil are presented. The abundance, distribution, and composition of microplastics in the surface of this freshwater body were investigated, and these parameters were correlated with population density, land occupation, wind, and geohydrologic processes. The samples were collected with a manta net (60 µm mesh size). Microplastics were found in all the samples, with an average of 11.9 ± 0.6 to 61.2 ± 6.1 items m-3, which indicates the widespread contamination of the lake with plastic particles. The most frequent microplastic morphology was the fragment type in the size range of 100 to 250 µm, and the predominant colours were white/transparent and red. Measurement uncertainty of the visual microplastic counts showed that black colour microplastics is more susceptible to be mistaken, which might lead to an underestimation and/or overestimation of the total number of microplastics. Polypropylene and polyethylene together comprised most of the polymer types (98%). Micro-Fourier transform infrared (micro-FTIR) spectroscopy analyses showed that 58% of the analysed polymers were highly oxidised, indicating long residence of this particles in the water. In addition, our data show that the distribution of microplastics is strongly influenced by the geohydrological characteristics of the lake. Therefore, this research may provide information for further investigations of microplastic distribution in Lake Guaíba and can serve as a base to improve the regulations regarding waste management to effectively reduce microplastic pollution in freshwater systems. Additionally, the measurement uncertainty showed that black microplastics are more susceptible to variations in their measurements.

6.
Forensic Sci Int ; 272: 28-36, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28088710

RESUMEN

Modifications of cotton and polyester textiles due to shots fired at short range were analyzed with a variable pressure scanning electron microscope (VP-SEM). Different mechanisms of fiber rupture as a function of fiber type and shooting distance were detected, namely fusing, melting, scorching, and mechanical breakage. To estimate the firing distance, the approximately exponential decay of GSR coverage as a function of radial distance from the entrance hole was determined from image analysis, instead of relying on chemical analysis with EDX, which is problematic in the VP-SEM. A set of backscattered electron images, with sufficient magnification to discriminate micrometer wide GSR particles, was acquired at different radial distances from the entrance hole. The atomic number contrast between the GSR particles and the organic fibers allowed to find a robust procedure to segment the micrographs into binary images, in which the white pixel count was attributed to GSR coverage. The decrease of the white pixel count followed an exponential decay, and it was found that the reciprocal of the decay constant, obtained from the least-square fitting of the coverage data, showed a linear dependence on the shooting distance.

7.
J Inorg Biochem ; 100(1): 88-96, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16321444

RESUMEN

Spicules of calcareous sponges are elaborately shaped skeletal elements that nonetheless show characteristics of calcite single-crystals. Our atomic force microscopic and transmission electron microscopic investigation of the triradiate spicules of the sponge Pericharax heteroraphis reveals a nano-cluster structure with mostly well-aligned small crystal domains and pockets with accumulated domain misalignments. Combined high-resolution and energy-filtering transmission electron microscopy revealed carbon enrichments located in between crystal domain boundaries, which strongly suggests an intercalated network-like proteinaceous organic matrix. This matrix is proposed to be involved in the nano-clustered calcite precipitation via a transient phase that may enable a 'brick-by-brick' formation of composite and yet single-crystalline spicules with elaborate morphologies. This composite cluster structure reduces the brittleness of the material by dissipating strain energy and deflecting crack propagation from the calcite cleavage planes, but the lattice symmetry and anisotropic growth properties of calcite still play a major role in the morphogenesis of these unusual calcite single-crystals. Our structural, crystallographic, textural, and chemical analysis of sponge spicules corroborates the view that nano-clustered crystal growth, induced by organic matrices, is a basic characteristic of biomineralisation that enables the production of composite materials with elaborate morphologies.


Asunto(s)
Carbonato de Calcio/química , Minerales/química , Nanoestructuras/química , Poríferos/química , Animales , Microscopía Electrónica , Poríferos/ultraestructura , Solubilidad , Difracción de Rayos X
8.
J Endod ; 35(11): 1558-62, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19840647

RESUMEN

INTRODUCTION: This qualitative study investigated the effect of N(2)(+) and Ar(+) ion implantation on morphologic alterations and fatigue resistance in Pro Taper S1 NiTi (Dentsply-Maillefer, Ballaigues, Switzerland) rotary instruments. METHODS: Instruments were divided into three groups: N(2)(+) implanted, Ar(+) implanted, and unmodified control group. All instruments were used to prepare five curved canals in epoxy resin blocks with brushing motion. The instruments were examined in a scanning electron microscope (SEM) before use, after first use, and after the fifth use. A more demanding cyclic fatigue test was undertaken, submitting the instruments to 15-second periods of continuous rotation inside the curved canals without a brushing motion. Crack formation was analyzed with the SEM, and the number of 15-second periods required to fracture each instrument was recorded. RESULTS: No significant morphologic alterations were observed in the instruments after the preparation of five canals. Crack density was similar in all groups. In the subsequent cyclic fatigue test, instruments implanted with nitrogen performed worse than those implanted with argon and the control group. Fracture faces show differences in the fracture modes. CONCLUSIONS: Ar(+) implantation improved the performance of S1 files moderately, whereas nitrogen ion-implanted files performed worse in the fatigue test. A reduction in file performance seems to be caused by nitrogen diffusion in the grain boundaries, instead of the desired improvement caused by titanium nitride formation.


Asunto(s)
Argón/química , Aleaciones Dentales/química , Níquel/química , Nitrógeno/química , Preparación del Conducto Radicular/instrumentación , Titanio/química , Cavidad Pulpar/anatomía & histología , Resinas Epoxi , Diseño de Equipo , Falla de Equipo , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Modelos Anatómicos , Estrés Mecánico , Propiedades de Superficie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA