Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
PLoS Pathog ; 18(1): e1010183, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986207

RESUMEN

Antibodies are principal immune components elicited by vaccines to induce protection from microbial pathogens. In the Thai RV144 HIV-1 vaccine trial, vaccine efficacy was 31% and the sole primary correlate of reduced risk was shown to be vigorous antibody response targeting the V1V2 region of HIV-1 envelope. Antibodies against V3 also were inversely correlated with infection risk in subsets of vaccinees. Antibodies recognizing these regions, however, do not exhibit potent neutralizing activity. Therefore, we examined the antiviral potential of poorly neutralizing monoclonal antibodies (mAbs) against immunodominant V1V2 and V3 sites by passive administration of human mAbs to humanized mice engrafted with CD34+ hematopoietic stem cells, followed by mucosal challenge with an HIV-1 infectious molecular clone expressing the envelope of a tier 2 resistant HIV-1 strain. Treatment with anti-V1V2 mAb 2158 or anti-V3 mAb 2219 did not prevent infection, but V3 mAb 2219 displayed a superior potency compared to V1V2 mAb 2158 in reducing virus burden. While these mAbs had no or weak neutralizing activity and elicited undetectable levels of antibody-dependent cellular cytotoxicity (ADCC), V3 mAb 2219 displayed a greater capacity to bind virus- and cell-associated HIV-1 envelope and to mediate antibody-dependent cellular phagocytosis (ADCP) and C1q complement binding as compared to V1V2 mAb 2158. Mutations in the Fc region of 2219 diminished these effector activities in vitro and lessened virus control in humanized mice. These results demonstrate the importance of Fc functions other than ADCC for antibodies without potent neutralizing activity.


Asunto(s)
Productos del Gen env/inmunología , Anticuerpos Anti-VIH/farmacología , Infecciones por VIH , Carga Viral/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Humanos , Inmunización Pasiva , Regiones Constantes de Inmunoglobulina , Ratones , Membrana Mucosa
2.
PLoS Pathog ; 16(12): e1009185, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370382

RESUMEN

HIV-1 envelope (Env) is a trimer of gp120-gp41 heterodimers, synthesized from a precursor gp160 that contains an ER-targeting signal peptide (SP) at its amino-terminus. Each trimer is swathed by ~90 N-linked glycans, comprising complex-type and oligomannose-type glycans, which play an important role in determining virus sensitivity to neutralizing antibodies. We previously examined the effects of single point SP mutations on Env properties and functions. Here, we aimed to understand the impact of the SP diversity on glycosylation of virus-derived Env and virus neutralization by swapping SPs. Analyses of site-specific glycans revealed that SP swapping altered Env glycan content and occupancy on multiple N-linked glycosites, including conserved N156 and N160 glycans in the V1V2 region at the Env trimer apex and N88 at the trimer base. Virus neutralization was also affected, especially by antibodies against V1V2, V3, and gp41. Likewise, SP swaps affected the recognition of soluble and cell-associated Env by antibodies targeting distinct V1V2 configurations, V3 crown, and gp41 epitopes. These data highlight the contribution of SP sequence diversity in shaping the Env glycan content and its impact on the configuration and accessibility of V1V2 and other Env epitopes.


Asunto(s)
Epítopos/inmunología , VIH-1/inmunología , Señales de Clasificación de Proteína/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Anticuerpos Neutralizantes/inmunología , Glicosilación , Anticuerpos Anti-VIH/inmunología , Humanos
3.
J Infect Dis ; 223(6): 957-970, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33367897

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people globally. Virus infection requires the receptor-binding domain (RBD) of the spike protein. Although studies have demonstrated anti-spike and -RBD antibodies to be protective in animal models, and convalescent plasma as a promising therapeutic option, little is known about immunoglobulin isotypes capable of blocking infection. METHODS: We studied spike- and RBD-specific immunoglobulin isotypes in convalescent and acute plasma/serum samples using a multiplex bead assay. We also determined virus neutralization activities in plasma and serum samples, and purified immunoglobulin fractions using a vesicular stomatitis pseudovirus assay. RESULTS: Spike- and RBD-specific immunoglobulin (Ig) M, IgG1, and IgA1 were produced by all or nearly all subjects at variable levels and detected early after infection. All samples displayed neutralizing activity. Regression analyses revealed that IgM and IgG1 contributed most to neutralization, consistent with IgM and IgG fractions' neutralization potency. IgA also exhibited neutralizing activity, but with lower potency. CONCLUSION: IgG, IgM, and IgA are critical components of convalescent plasma used for treatment of coronavirus disease 2019 (COVID-19).


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/terapia , Inmunoglobulina A/sangre , Inmunoglobulina M/sangre , SARS-CoV-2/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/diagnóstico , Prueba de COVID-19 , Femenino , Humanos , Inmunización Pasiva , Inmunoglobulina A/uso terapéutico , Inmunoglobulina G/sangre , Inmunoglobulina G/uso terapéutico , Isotipos de Inmunoglobulinas/sangre , Isotipos de Inmunoglobulinas/uso terapéutico , Inmunoglobulina M/uso terapéutico , Masculino , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/inmunología , Sueroterapia para COVID-19
4.
J Virol ; 94(6)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31852781

RESUMEN

Purinergic receptors are well-established modulators of inflammatory processes, primarily through detection of extracellular nucleotides that are released by dying or infected cells. Emerging literature has demonstrated that inhibition of these inflammatory receptors can block HIV-1 productive infection and HIV-1-associated inflammation. The specificity of receptor type and mechanism of interaction has not yet been determined. Here, we characterize the inhibitory activity of P2X1 receptor antagonists, NF279 and NF449, in cell lines, primary cells, and a variety of HIV-1 envelope (Env) clades. NF279 and NF449 blocked productive infection at the level of viral membrane fusion, with a range of inhibitory activities against different HIV-1 Env isolates. A mutant virus carrying a truncation deletion of the C-terminal tail of HIV-1 Env glycoprotein 41 (gp41) showed reduced sensitivity to P2X1 antagonists, indicating that the sensitivity of inhibition by these molecules may be modulated by Env conformation. In contrast, a P2X7 antagonist, A438079, had a limited effect on productive infection and fusion. NF279 and NF449 interfered with the ability of the gp120 variable regions 1 and 2 (V1V2)-targeted broadly neutralizing antibody PG9 to block productive infection, suggesting that these drugs may antagonize HIV-1 Env at gp120 V1V2 to block viral membrane fusion. Our observations indicate that P2X1 antagonism can inhibit HIV-1 replication at the level of viral membrane fusion through interaction with Env. Future studies will probe the nature of these compounds in inhibiting HIV-1 fusion and the development of small molecules to block HIV-1 entry via this mechanism.IMPORTANCE While effective treatment can lower the severe morbidity and mortality associated with HIV-1 infection, patients infected with HIV-1 suffer from significantly higher rates of noncommunicable comorbidities associated with chronic inflammation. Emerging literature suggests a key role for P2X1 receptors in mediating this chronic inflammation, but the mechanism is still unknown. Here, we demonstrate that HIV-1 infection is reduced by P2X1 receptor antagonism. This inhibition is mediated by interference with HIV-1 Env and can impact a variety of viral clades. These observations highlight the importance of P2X1 antagonists as potential novel therapeutics that could serve to block a variety of different viral clades with additional benefits for their anti-inflammatory properties.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Mutación , Antagonistas del Receptor Purinérgico P2X/farmacología , Internalización del Virus/efectos de los fármacos , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/patología , VIH-1/genética , Humanos
5.
PLoS Pathog ; 14(1): e1006812, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29370305

RESUMEN

HIV-1 envelope glycoprotein (Env) mediates virus attachment and entry into the host cells. Like other membrane-bound and secreted proteins, HIV-1 Env contains at its N terminus a signal peptide (SP) that directs the nascent Env to the endoplasmic reticulum (ER) where Env synthesis and post-translational modifications take place. SP is cleaved during Env biosynthesis but potentially influences the phenotypic traits of the Env protein. The Env SP sequences of HIV-1 isolates display high sequence variability, and the significance of such variability is unclear. We postulate that changes in the Env SP influence Env transport through the ER-Golgi secretory pathway and Env folding and/or glycosylation that impact on Env incorporation into virions, receptor binding and antibody recognition. We first evaluated the consequences of mutating the charged residues in the Env SP in the context of infectious molecular clone HIV-1 REJO.c/2864. Results show that three different mutations affecting histidine at position 12 affected Env incorporation into virions that correlated with reduction of virus infectivity and DC-SIGN-mediated virus capture and transmission. Mutations at positions 8, 12, and 15 also rendered the virus more resistant to neutralization by monoclonal antibodies against the Env V1V2 region. These mutations affected the oligosaccharide composition of N-glycans as shown by changes in Env reactivity with specific lectins and by mass spectrometry. Increased neutralization resistance and N-glycan composition changes were also observed when analogous mutations were introduced to another HIV-1 strain, JRFL. To the best of our knowledge, this is the first study showing that certain residues in the HIV-1 Env SP can affect virus neutralization sensitivity by modulating oligosaccharide moieties on the Env N-glycans. The HIV-1 Env SP sequences thus may be under selective pressure to balance virus infectiousness with virus resistance to the host antibody responses. (289 words).


Asunto(s)
Anticuerpos Neutralizantes/genética , Anticuerpos Anti-VIH/genética , VIH-1/inmunología , Mutación , Señales de Clasificación de Proteína/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Anticuerpos Neutralizantes/metabolismo , Células Cultivadas , Glicosilación , Células HEK293 , Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/genética , Infecciones por VIH/inmunología , VIH-1/genética , VIH-1/metabolismo , Humanos , Pruebas de Neutralización , Fenotipo , Polisacáridos/genética , Polisacáridos/metabolismo , Acoplamiento Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
6.
J Virol ; 90(24): 10993-11006, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27630234

RESUMEN

Strong antibody (Ab) responses against V1V2 epitopes of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope (Env) correlated with reduced infection rates in studies of HIV, simian-human immunodeficiency virus (SHIV), and simian immunodeficiency virus (SIV). In order to focus the Ab response on V1V2, we used six V1V2 sequences and nine scaffold proteins to construct immunogens which were tested using various immunization regimens for their ability to induce cross-reactive and biologically active V2 Abs in rabbits. A prime/boost immunization strategy was employed using gp120 DNA and various V1V2-scaffold proteins. The rabbit polyclonal Ab responses (i) were successfully focused on the V1V2 region, with weak or only transient responses to other Env epitopes, (ii) displayed broad cross-reactive binding activity with gp120s and the V1V2 regions of diverse strains from clades B, C, and E, (iii) included V2 Abs with specificities similar to those found in HIV-infected individuals, and (iv) remained detectable ≥1 year after the last boosting dose. Importantly, sera from rabbits receiving V1V2-scaffold immunogens displayed Ab-dependent cellular phagocytosis whereas sera from rabbits receiving only gp120 did not. The results represent the first fully successful example of reverse vaccinology in the HIV vaccine field with rationally designed epitope scaffold immunogens inducing Abs that recapitulate the epitope specificity and biologic activity of the human monoclonal Abs from which the immunogens were designed. Moreover, this is the first immunogenicity study using epitope-targeting, rationally designed vaccine constructs that induced an Fc-mediated activity associated with protection from infection with HIV, SIV, and SHIV. IMPORTANCE: Novel immunogens were designed to focus the antibody response of rabbits on the V1V2 epitopes of HIV-1 gp120 since such antibodies were associated with reduced infection rates of HIV, SIV, and SHIV. The vaccine-induced antibodies were broadly cross-reactive with the V1V2 regions of HIV subtypes B, C and E and, importantly, facilitated Fc-mediated phagocytosis, an activity not induced upon immunization of rabbits with gp120. This is the first immunogenicity study of vaccine constructs that focuses the antibody response on V1V2 and induces V2-specific antibodies with the ability to mediate phagocytosis, an activity that has been associated with protection from infection with HIV, SIV, and SHIV.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/biosíntesis , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/prevención & control , Inmunización Secundaria , Inmunogenicidad Vacunal , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/biosíntesis , Vacunas contra el SIDA/genética , Secuencia de Aminoácidos , Animales , Reacciones Cruzadas , Diseño de Fármacos , Epítopos/química , Epítopos/inmunología , Femenino , Expresión Génica , Proteína gp120 de Envoltorio del VIH/biosíntesis , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , VIH-1/inmunología , Humanos , Modelos Moleculares , Mapeo Peptídico , Fagocitosis/efectos de los fármacos , Estructura Secundaria de Proteína , Conejos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/química , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología
7.
J Virol ; 90(23): 10513-10526, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27630246

RESUMEN

HIV is transmitted most efficiently from cell to cell, and productive infection occurs mainly in activated CD4 T cells. It is postulated that HIV exploits immunological synapses formed between CD4 T cells and antigen-presenting cells to facilitate the targeting and infection of activated CD4 T cells. This study sought to evaluate how the presence of the HIV envelope (Env) in the CD4 T cell immunological synapse affects synapse formation and intracellular signaling to impact the downstream T cell activation events. CD4 T cells were applied to supported lipid bilayers that were reconstituted with HIV Env gp120, anti-T cell receptor (anti-TCR) monoclonal antibody, and ICAM-1 to represent the surface of HIV Env-bearing antigen-presenting cells. The results showed that the HIV Env did not disrupt immunological synapse formation. Instead, the HIV Env accumulated with TCR at the center of the synapse, altered the kinetics of TCR recruitment to the synapse and affected synapse morphology over time. The HIV Env also prolonged Lck phosphorylation at the synapse and enhanced TCR-induced CD69 upregulation, interleukin-2 secretion, and proliferation to promote virus infection. These results suggest that HIV uses the immunological synapse as a conduit not only for selective virus transmission to activated CD4 T cells but also for boosting the T cell activation state, thereby increasing its likelihood of undergoing productive replication in targeted CD4 T cells. IMPORTANCE: There are about two million new HIV infections every year. A better understanding of how HIV is transmitted to susceptible cells is critical to devise effective strategies to prevent HIV infection. Activated CD4 T cells are preferentially infected by HIV, although how this is accomplished is not fully understood. This study examined whether HIV co-opts the normal T cell activation process through the so-called immunological synapse. We found that the HIV envelope is recruited to the center of the immunological synapse together with the T cell receptor and enhances the T cell receptor-induced activation of CD4 T cells. Heightened cellular activation promotes the capacity of CD4 T cells to support productive HIV replication. This study provides evidence of the exploitation of the normal immunological synapse and T cell activation process by HIV to boost the activation state of targeted CD4 T cells and promote the infection of these cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Proteína gp120 de Envoltorio del VIH/inmunología , Sinapsis Inmunológicas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Anticuerpos Monoclonales/administración & dosificación , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , VIH/inmunología , VIH/fisiología , Anticuerpos Anti-VIH/administración & dosificación , Proteína gp120 de Envoltorio del VIH/antagonistas & inhibidores , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , Infecciones por VIH/virología , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Membrana Dobles de Lípidos , Activación de Linfocitos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Transducción de Señal , Replicación Viral
8.
J Virol ; 89(17): 9090-102, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26109728

RESUMEN

UNLABELLED: The V3 region of HIV-1 gp120 is important for virus-coreceptor interaction and highly immunogenic. Although most anti-V3 antibodies neutralize only the sensitive tier 1 viruses, anti-V3 antibodies effective against the more resistant viruses exist, and a better understanding of these antibodies and their epitopes would be beneficial for the development of novel vaccine immunogens against HIV. The HIV-1 isolate JRFL with its cryptic V3 is resistant to most V3-specific monoclonal antibodies (MAbs). However, the V3 MAb 2424 achieves 100% neutralization against JRFL. 2424 is encoded by IGHV3-53 and IGLV2-28 genes, a pairing rarely used by the other V3 MAbs. 2424 also has distinct binding and neutralization profiles. Studies of 2424-mediated neutralization of JRFL produced with a mannosidase inhibitor further revealed that its neutralizing activity is unaffected by the glycan composition of the virus envelope. To understand the distinct activity of 2424, we determined the crystal structure of 2424 Fab in complex with a JRFL V3 peptide and showed that the 2424 epitope is located at the tip of the V3 crown ((307)IHIGPGRAFYT(319)), dominated by interactions with His(P308), Pro(P313), and Arg(P315). The binding mode of 2424 is similar to that of the well-characterized MAb 447-52D, although 2424 is more side chain dependent. The 2424 epitope is focused on the very apex of V3, away from nearby glycans, facilitating antibody access. This feature distinguishes the 2424 epitope from the other V3 crown epitopes and indicates that the tip of V3 is a potential site to target and incorporate into HIV vaccine immunogens. IMPORTANCE: HIV/AIDS vaccines are crucial for controlling the HIV epidemics that continue to afflict millions of people worldwide. However, HIV vaccine development has been hampered by significant scientific challenges, one of which is the inability of HIV vaccine candidates evaluated thus far to elicit production of potent and broadly neutralizing antibodies. The V3 loop is one of the few immunogenic targets on the virus envelope glycoprotein that can induce neutralizing antibodies, but in many viruses, parts of V3 are inaccessible for antibody recognition. This study examined a V3-specific monoclonal antibody that can completely neutralize HIV-1 JRFL, a virus isolate resistant to most V3 antibodies. Our data reveal that this antibody recognizes the most distal tip of V3, which is not as occluded as other parts of V3. Hence, the epitope of 2424 is in one of the vulnerable sites on the virus that may be exploited in designing HIV vaccine immunogens.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Vacunas contra el SIDA/inmunología , Anticuerpos Monoclonales/ultraestructura , Especificidad de Anticuerpos/inmunología , Línea Celular , Cristalografía por Rayos X , Epítopos/inmunología , Células HEK293 , Antígenos VIH/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Manosidasas/antagonistas & inhibidores , Datos de Secuencia Molecular , Polisacáridos/inmunología , Estructura Terciaria de Proteína
9.
J Virol ; 88(21): 12853-65, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25165106

RESUMEN

UNLABELLED: Broadly neutralizing antibodies targeting the HIV-1 envelope (Env) are key components for protection against HIV-1. However, many cross-reactive epitopes are often occluded. This study investigates the mechanisms contributing to the masking of V2i (variable loop V2 integrin) epitopes compared to the accessibility of V3 epitopes. V2i are conformation-dependent epitopes encompassing the integrin α4ß7-binding motif on the V1V2 loop of HIV-1 Env gp120. The V2i monoclonal antibodies (MAbs) display extensive cross-reactivity with gp120 monomers from many subtypes but neutralize only few viruses, indicating V2i's cryptic nature. First, we asked whether CD4-induced Env conformational changes affect V2i epitopes similarly to V3. CD4 treatment of BaL and JRFL pseudoviruses increased their neutralization sensitivity to V3 MAbs but not to the V2i MAbs. Second, the contribution of N-glycans in masking V2i versus V3 epitopes was evaluated by testing the neutralization of pseudoviruses produced in the presence of a glycosidase inhibitor, kifunensine. Viruses grown in kifunensine were more sensitive to neutralization by V3 but not V2i MAbs. Finally, we evaluated the time-dependent dynamics of the V2i and V3 epitopes. Extending the time of virus-MAb interaction to 18 h before adding target cells increased virus neutralization by some V2i MAbs and all V3 MAbs tested. Consistent with this, V2i MAb binding to Env on the surface of transfected cells also increased in a time-dependent manner. Hence, V2i and V3 epitopes are highly dynamic, but distinct factors modulate the antibody accessibility of these epitopes. The study reveals the importance of the structural dynamics of V2i and V3 epitopes in determining HIV-1 neutralization by antibodies targeting these sites. IMPORTANCE: Conserved neutralizing epitopes are present in the V1V2 and V3 regions of HIV-1 Env, but these epitopes are often occluded from Abs. This study reveals that distinct mechanisms contribute to the masking of V3 epitopes and V2i epitopes in the V1V2 domain. Importantly, V3 MAbs and some V2i MAbs display greater neutralization against relatively resistant HIV-1 isolates when the MAbs interact with the virus for a prolonged period of time. Given their highly immunogenic nature, V3 and V2i epitopes are valuable targets that would augment the efficacy of HIV vaccines.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Línea Celular , Anticuerpos Anti-VIH/metabolismo , Humanos , Pruebas de Neutralización , Unión Proteica
10.
J Virol ; 87(19): 10843-54, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23903844

RESUMEN

Th17 cells are enriched in the gut mucosa and play a critical role in maintenance of the mucosal barrier and host defense against extracellular bacteria and fungal infections. During chronic human immunodeficiency virus (HIV) infection, Th17 cells were more depleted compared to Th1 cells, even when the patients had low or undetectable viremia. To investigate the differential effects of HIV infection on Th17 and Th1 cells, a culture system was used in which CCR6(+) CD4(+) T cells were sorted from healthy human peripheral blood and activated in the presence of interleukin 1ß (IL-1ß) and IL-23 to drive expansion of Th17 cells while maintaining Th1 cells. HIV infection of these cultures had minimal effects on Th1 cells but caused depletion of Th17 cells. Th17 loss correlated with greater levels of virus-infected cells and cell death. In identifying cellular factors contributing to higher susceptibility of Th17 cells to HIV, we compared Th17-enriched CCR6(+) and Th17-depleted CCR6(-) CD4 T cell cultures and noted that Th17-enriched CCR6(+) cells expressed higher levels of α4ß7 and bound HIV envelope in an α4ß7-dependent manner. The cells also had greater expression of CD4 and CXCR4, but not CCR5, than CCR6(-) cells. Moreover, unlike Th1 cells, Th17 cells produced little CCR5 ligand, and transfection with one of the CCR5 ligands, MIP-1ß (CCL4), increased their resistance against HIV. These results indicate that features unique to Th17 cells, including higher expression of HIV receptors and lack of autocrine CCR5 ligands, are associated with enhanced permissiveness of these cells to HIV.


Asunto(s)
Infecciones por VIH/virología , VIH-1/patogenicidad , Receptores CCR5/metabolismo , Receptores CCR6/metabolismo , Receptores Virales/metabolismo , Células TH1/virología , Células Th17/virología , Apoptosis , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Humanos , Interleucina-17/metabolismo , Receptores CXCR4/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Viremia/metabolismo , Viremia/patología , Internalización del Virus , Replicación Viral
11.
Front Immunol ; 15: 1382619, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779671

RESUMEN

Introduction: Antibodies against the SARS-CoV-2 spike protein are a critical immune determinant for protection against the virus. While virus neutralization is a key function of spike-specific antibodies, antibodies also mediate Fc-dependent activities that can play a role in protection or pathogenesis. Methods: This study characterized serum antibody responses elicited after two doses of heterologous adenovirus-vectored (Ad26/ Ad5) vaccines. Results: Vaccine-induced antibody binding titers and Fc-mediated functions decreased over six months, while neutralization titers remained stable. Comparison of antibody isotypes elicited after Ad26/Ad5 vs. LNP-mRNA vaccination and after infection showed that anti-spike IgG1 were dominant and produced to high levels in all groups. The Ad26/Ad5 vaccines also induced IgG4 but not IgG2 and IgG3, whereas the LNP-mRNA vaccines elicited a full Ig spectrum (IgM, IgG1-4, IgA1-2). Convalescent COVID-19 patients had mainly IgM and IgA1 alongside IgG1. Despite these differences, the neutralization potencies against early variants were similar. However, both vaccine groups had antibodies with greater Fc potencies of binding complement and Fcg receptors than the COVID-19 group. The Ad26/Ad5 group also displayed a greater potency of RBD-specific antibody-mediated cellular phagocytosis. Discussion: Antibodies with distinctive quality were induced by different vaccines and infection. The data imply the utility of different vaccine platforms to elicit antibody responses with fine-tuned Fc activities.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunoglobulina G , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Femenino , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Masculino , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/genética , Ad26COVS1/inmunología , Adulto , Persona de Mediana Edad , Adenoviridae/inmunología , Adenoviridae/genética , Vectores Genéticos , Inmunoglobulina A/inmunología , Inmunoglobulina A/sangre
12.
Res Sq ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36824869

RESUMEN

Bacteria dysbiosis has been associated with an increased risk of HIV-1 transmission and acquisition. The prevalent idea is that bacteria dysbiosis compromises mucosal integrity and promotes inflammatory conditions to cause recruitment and activation of immune cells that harbor or are targeted by HIV-1. However, it is also possible that HIV-1 directly binds bacteria or bacterial products to impact virus infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins. The Streptococcal Siglec-like lectin SLBR-N, which is part of the fimbriae shrouding the bacteria surface and recognizes α2,3 sialyated O-linked glycans, was noted for its ability to enhance HIV-1 infectivity in the context of cell-free infection and cell-to-cell transfer. Enhancing effects were recapitulated with O-glycan-binding plant lectins, signifying the importance of O-glycans. Conversely, N-glycan-binding bacterial lectins FimH and Msl had no effect. SLBR-N was demonstrated to capture and transfer infectious HIV-1 virions, bind to O-glycans on HIV-1 Env, and increase HIV-1 resistance to broadly neutralizing antibodies targeting different regions of Env. Hence, this study highlights the potential contribution of O-glycans in promoting HIV-1 infection through the exploitation of O-glycan-binding lectins from commensal bacteria at the mucosa.

13.
J Immunol ; 187(9): 4676-85, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21957147

RESUMEN

The natural function of dendritic cells (DCs) is to capture and degrade pathogens for Ag presentation. However, HIV-1 can evade viral degradation by DCs and hijack DCs for migration to susceptible CD4(+) T lymphocytes. It is unknown what factors decide whether a virus is degraded or transmitted to T cells. The interaction of DCs with HIV-1 involves C-type lectin receptors, such as DC-specific ICAM-3-grabbing nonintegrin, which bind to the envelope glycoprotein complex (Env), which is decorated heavily with N-linked glycans. We hypothesized that the saccharide composition of the Env N-glycans is involved in avoiding viral degradation and Ag presentation, as well as preserving infectious virus for the transmission to target cells. Therefore, we studied the fate of normally glycosylated virus versus oligomannose-enriched virus in DCs. Changing the heterogeneous N-linked glycan composition of Env to uniform oligomannose N-glycans increased the affinity of HIV-1 for DC-specific ICAM-3-grabbing nonintegrin and enhanced the capture of HIV-1 by immature DCs; however, it decreased the subsequent transmission to target cells. Oligomannose-enriched HIV-1 was directed more efficiently into the endocytic pathway, resulting in enhanced viral degradation and reduced virus transfer to target cells. Furthermore, Env containing exclusively oligomannose N-glycans was presented to Env-specific CD4(+) T cells more efficiently. Taken together, our results showed that the HIV-1 N-glycan composition plays a crucial role in the balance between DC-mediated Ag degradation and presentation and DC-mediated virus transmission to target cells. This finding may have implications for the early events in HIV-1 transmission and the induction of antiviral immune responses.


Asunto(s)
Presentación de Antígeno/inmunología , Células Dendríticas/inmunología , Células Dendríticas/virología , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , VIH-1/inmunología , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Células Dendríticas/metabolismo , Células HEK293 , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Polisacáridos/inmunología , Receptores de Superficie Celular/metabolismo , Virión/inmunología , Virión/metabolismo , Acoplamiento Viral
14.
Front Immunol ; 14: 1271686, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854587

RESUMEN

Introduction: Neutralizing antibodies (Abs) are one of the immune components required to protect against viral infections. However, developing vaccines capable of eliciting neutralizing Abs effective against a broad array of HIV-1 isolates has been an arduous challenge. Objective: This study sought to test vaccines aimed to induce Abs against neutralizing epitopes at the V1V2 apex of HIV-1 envelope (Env). Methods: Four groups of rabbits received a DNA vaccine expressing the V1V2 domain of the CRF01_AE A244 strain on a trimeric 2J9C scaffold (V1V2-2J9C) along with a protein vaccine consisting of an uncleaved prefusion-optimized A244 Env trimer with V3 truncation (UFO-BG.ΔV3) or a V1V2-2J9C protein and their respective immune complexes (ICs). These IC vaccines were made using 2158, a V1V2-specific monoclonal Ab (mAb), which binds the V2i epitope in the underbelly region of V1V2 while allosterically promoting the binding of broadly neutralizing mAb PG9 to its V2 apex epitope in vitro. Results: Rabbit groups immunized with the DNA vaccine and uncomplexed or complexed UFO-BG.ΔV3 proteins (DNA/UFO-UC or IC) displayed similar profiles of Env- and V1V2-binding Abs but differed from the rabbits receiving the DNA vaccine and uncomplexed or complexed V1V2-2J9C proteins (DNA/V1V2-UC or IC), which generated more cross-reactive V1V2 Abs without detectable binding to gp120 or gp140 Env. Notably, the DNA/UFO-UC vaccine elicited neutralizing Abs against some heterologous tier 1 and tier 2 viruses from different clades, albeit at low titers and only in a fraction of animals, whereas the DNA/V1V2-UC or IC vaccines did not. In comparison with the DNA/UFO-UC group, the DNA/UFO-IC group showed a trend of higher neutralization against TH023.6 and a greater potency of V1V2-specific Ab-dependent cellular phagocytosis (ADCP) but failed to neutralize heterologous viruses. Conclusion: These data demonstrate the capacity of V1V2-2J9C-encoding DNA vaccine in combination with UFO-BG.ΔV3, but not V1V2-2J9C, protein vaccines, to elicit homologous and heterologous neutralizing activities in rabbits. The elicitation of neutralizing and ADCP activities was modulated by delivery of UFO-BG.ΔV3 complexed with V2i mAb 2158.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Vacunas de ADN , Animales , Conejos , Anticuerpos Anti-VIH , Complejo Antígeno-Anticuerpo , Vacunación , Anticuerpos Neutralizantes , Epítopos , ADN
16.
iScience ; 25(12): 105608, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36406863

RESUMEN

A fraction of patients with COVID-19 develops severe disease requiring hospitalization, while the majority, including high-risk individuals, experience mild symptoms. Severe disease has been associated with higher levels of antibodies and inflammatory cytokines but often among patients with diverse demographics and comorbidity status. This study evaluated hospitalized vs. ambulatory patients with COVID-19 with demographic risk factors for severe COVID-19: median age of 63, >80% male, and >85% black and/or Hispanic. Sera were collected four to 243 days after symptom onset and evaluated for binding and functional antibodies as well as 48 cytokines and chemokines. SARS-CoV-2-specific antibody levels and functions were similar in ambulatory and hospitalized patients. However, a strong correlation between anti-S2 antibody levels and the other antibody parameters, along with higher IL-27 levels, was observed in hospitalized but not ambulatory cases. These data indicate that antibodies against the relatively conserved S2 spike subunit and immunoregulatory cytokines such as IL-27 are potential immune determinants of COVID-19.

17.
J Immunol ; 182(10): 6369-78, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19414790

RESUMEN

Glycosylation of HIV-1 envelope gp120 determines not only the proper structure, but also the immune responses against this Ag. Although glycans may be part of specific epitopes or shield other epitopes from T cells and Abs, this study provides evidence for a different immunomodulatory function of glycans associated with gp120 residues N230 and N448. These glycans are required for efficient MHC class II-restricted presentation of nearby CD4 T cell epitopes, even though they are not part of the epitopes. The glycans do not affect CD4 T cell recognition of more distant epitopes and are not essential for the proper folding and function of gp120. Data on CD4 T cell recognition of N448 mutants combined with proteolysis analyses and surface electrostatic potential calculation around residue N448 support the notion that N448 glycan near the epitope's C terminus renders the site to be surface accessible and allows its efficient processing. In contrast, the N230 glycan contributes to the nearby epitope presentation at a step other than the proteolytic processing of the epitope. Hence, N-glycans can determine CD4 T cell recognition of nearby gp120 epitopes by regulating the different steps in the MHC class II processing and presentation pathway after APCs acquire the intact gp120 Ag exogenously. Modifications of amino acids bearing glycans at the C termini of gp120 helper epitopes may prove to be a useful strategy for enhancing the immunogenicity of HIV-1 envelope gp120.


Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Polisacáridos/inmunología , Secuencia de Aminoácidos , Línea Celular , Epítopos de Linfocito T/química , Proteína gp120 de Envoltorio del VIH/química , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Polisacáridos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Vaccines (Basel) ; 9(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540685

RESUMEN

Immune complexes (ICs) made of antibody-bound antigens exhibit immunomodulatory activities exploitable in a vaccination strategy to optimize vaccine efficacy. The modulatory effects of ICs are typically attributed to the Fc fragments of the antibody components, which engage Fc receptors, complement and complement receptors on various immune cells. These Fc-mediated functions facilitate the critical interplay between innate and adaptive immune systems to impact the quality and quantity of the elicited adaptive responses. In addition to the Fc contribution, the Fab fragment also plays an immunoregulation role. The antigen-binding domains of the Fab fragment can bind their specific epitopes at high affinity to sterically occlude these antigenic sites from recognition by other antibodies. Moreover, the Fab-mediated binding has been demonstrated to induce allosteric alterations at nearby or distant antigenic sites. In this review article, we survey published studies to illuminate how the immunomodulatory functions of ICs have been investigated or utilized in a vaccination strategy to fight against an array of infectious pathogens, culminating with IC vaccine designs aimed at preventing HIV-1 infection. In particular, we highlight IC vaccine candidates that exploit Fab-mediated steric and allosteric effects to direct antibody responses away or toward the V1V2 domain, the V3 loop, and other antigenic sites on the HIV-1 envelope gp120 glycoprotein. Like other HIV-1 vaccine approaches, the path for IC-based vaccines to reach the clinic faces major hurdles yet to be overcome; however, investigations into this vaccine strategy have provided insights into the multifaceted activities of antibodies beyond their conventional roles in the host defense against HIV-1 and other microbial pathogens.

19.
medRxiv ; 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34031663

RESUMEN

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.

20.
Front Immunol ; 12: 759688, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987505

RESUMEN

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Saliva/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Formación de Anticuerpos/inmunología , COVID-19/sangre , COVID-19/virología , Femenino , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Saliva/virología , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA