Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(15): E2114-23, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27035980

RESUMEN

Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes.


Asunto(s)
Anopheles/genética , Cromosomas de Insectos/genética , Insectos Vectores/genética , Cromosoma Y/genética , Animales , Femenino , Malaria , Masculino , Filogenia , Análisis de Secuencia de ADN , Cromosoma X/genética
2.
J Bacteriol ; 191(8): 2864-70, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19201792

RESUMEN

Brucellae are worldwide bacterial pathogens of livestock and wildlife, but phylogenetic reconstructions have been challenging due to limited genetic diversity. We assessed the taxonomic and evolutionary relationships of five Brucella species-Brucella abortus, B. melitensis, B. suis, B. canis, and B. ovis-using whole-genome comparisons. We developed a phylogeny using single nucleotide polymorphisms (SNPs) from 13 genomes and rooted the tree using the closely related soil bacterium and opportunistic human pathogen, Ochrobactrum anthropi. Whole-genome sequencing and a SNP-based approach provided the requisite level of genetic detail to resolve species in the highly conserved brucellae. Comparisons among the Brucella genomes revealed 20,154 orthologous SNPs that were shared in all genomes. Rooting with Ochrobactrum anthropi reveals that the B. ovis lineage is basal to the rest of the Brucella lineage. We found that B. suis is a highly divergent clade with extensive intraspecific genetic diversity. Furthermore, B. suis was determined to be paraphyletic in our analyses, only forming a monophyletic clade when the B. canis genome was included. Using a molecular clock with these data suggests that most Brucella species diverged from their common B. ovis ancestor in the past 86,000 to 296,000 years, which precedes the domestication of their livestock hosts. Detailed knowledge of the Brucella phylogeny will lead to an improved understanding of the ecology, evolutionary history, and host relationships for this genus and can be used for determining appropriate genotyping approaches for rapid detection and diagnostic assays for molecular epidemiological and clinical studies.


Asunto(s)
Brucella/clasificación , Brucella/genética , ADN Bacteriano/genética , Genoma Bacteriano , Filogenia , Polimorfismo de Nucleótido Simple , Animales , Análisis por Conglomerados , Evolución Molecular , Humanos , Ochrobactrum anthropi/genética
3.
Nat Biotechnol ; 22(4): 418-26, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15024387

RESUMEN

We describe a transcriptional analysis platform consisting of a universal micro-array system (UMAS) combined with an enzymatic manipulation step that is capable of generating expression profiles from any organism without requiring a priori species-specific knowledge of transcript sequences. The transcriptome is converted to cDNA and processed with restriction endonucleases to generate low-complexity pools (approximately 80-120) of equal length DNA fragments. The resulting material is amplified and detected with the UMAS system, comprising all possible 4,096 (4(6)) DNA hexamers. Ligation to the arrays yields thousands of 14-mer sequence tags. The compendium of signals from all pools in the array-of-universal arrays comprises a full-transcriptome expression profile. The technology was validated by analysis of the galactose response of Saccharomyces cerevisiae, and the resulting profiles showed excellent agreement with the literature and real-time PCR assays. The technology was also used to demonstrate expression profiling from a hybrid organism in a proof-of-concept experiment where a T-cell receptor gene was expressed in yeast.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones no Traducidas 3' , Algoritmos , Animales , Fragmentación del ADN , Enzimas de Restricción del ADN/metabolismo , ADN Complementario/metabolismo , Galactosa/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Modelos Genéticos , Músculo Esquelético/metabolismo , Músculos/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Linfocitos T/metabolismo , Transgenes
4.
Genome Announc ; 1(1)2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23405332

RESUMEN

The Bacillus anthracis Carbosap genome, which includes the pXO1 and pXO2 plasmids, has been shown to encode the major B. anthracis virulence factors, yet this strain's attenuation has not yet been explained. Here we report the draft genome sequence of this strain, and a comparison to fully virulent B. anthracis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA