Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(10): 5670-5683, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32329775

RESUMEN

Human CWC27 is an uncharacterized splicing factor and mutations in its gene are linked to retinal degeneration and other developmental defects. We identify the splicing factor CWC22 as the major CWC27 partner. Both CWC27 and CWC22 are present in published Bact spliceosome structures, but no interacting domains are visible. Here, the structure of a CWC27/CWC22 heterodimer bound to the exon junction complex (EJC) core component eIF4A3 is solved at 3Å-resolution. According to spliceosomal structures, the EJC is recruited in the C complex, once CWC27 has left. Our 3D structure of the eIF4A3/CWC22/CWC27 complex is compatible with the Bact spliceosome structure but not with that of the C complex, where a CWC27 loop would clash with the EJC core subunit Y14. A CWC27/CWC22 building block might thus form an intermediate landing platform for eIF4A3 onto the Bact complex prior to its conversion into C complex. Knock-down of either CWC27 or CWC22 in immortalized retinal pigment epithelial cells affects numerous common genes, indicating that these proteins cooperate, targeting the same pathways. As the most up-regulated genes encode factors involved in inflammation, our findings suggest a possible link to the retinal degeneration associated with CWC27 deficiencies.


Asunto(s)
Ciclofilinas/química , Factor 4A Eucariótico de Iniciación/química , Proteínas de Unión al ARN/química , Empalmosomas/química , Línea Celular , Ciclofilinas/genética , Ciclofilinas/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Exones , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Inflamación/genética , Modelos Moleculares , Dominios Proteicos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Empalmosomas/metabolismo
2.
Methods ; 172: 51-60, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31362039

RESUMEN

Recent developments in CRISPR technologies have opened new possibilities for improving genome editing tools dedicated to the Clostridium genus. In this study we adapted a two-plasmid tool based on this technology to enable scarless modification of the genome of two reference strains of Clostridium beijerinckii producing an Acetone/Butanol/Ethanol (ABE) or an Isopropanol/Butanol/Ethanol (IBE) mix of solvents. In the NCIMB 8052 ABE-producing strain, inactivation of the SpoIIE sporulation factor encoding gene resulted in sporulation-deficient mutants, and this phenotype was reverted by complementing the mutant strain with a functional spoIIE gene. Furthermore, the fungal cellulase-encoding celA gene was inserted into the C. beijerinckii NCIMB 8052 chromosome, resulting in mutants with endoglucanase activity. A similar two-plasmid approach was next used to edit the genome of the natural IBE-producing strain C. beijerinckii DSM 6423, which has never been genetically engineered before. Firstly, the catB gene conferring thiamphenicol resistance was deleted to make this strain compatible with our dual-plasmid editing system. As a proof of concept, our dual-plasmid system was then used in C. beijerinckii DSM 6423 ΔcatB to remove the endogenous pNF2 plasmid, which led to a sharp increase of transformation efficiencies.


Asunto(s)
Sistemas CRISPR-Cas/genética , Clostridium beijerinckii/genética , Ingeniería Metabólica/métodos , Plásmidos/genética , 2-Propanol/metabolismo , Butanoles/metabolismo , Celulasa/genética , Celulasa/metabolismo , Celulosa/metabolismo , Clostridium beijerinckii/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edición Génica/métodos , Genoma Bacteriano/genética , Microbiología Industrial/métodos , Mutación , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Transformación Bacteriana
3.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32385078

RESUMEN

Although Clostridium acetobutylicum is the model organism for the study of acetone-butanol-ethanol (ABE) fermentation, its characterization has long been impeded by the lack of efficient genome editing tools. In particular, the contribution of alcohol dehydrogenases to solventogenesis in this bacterium has mostly been studied with the generation of single-gene deletion strains. In this study, the three butanol dehydrogenase-encoding genes located on the chromosome of the DSM 792 reference strain were deleted iteratively by using a recently developed CRISPR-Cas9 tool improved by using an anti-CRISPR protein-encoding gene, acrIIA4 Although the literature has previously shown that inactivation of either bdhA, bdhB, or bdhC had only moderate effects on the strain, this study shows that clean deletion of both bdhA and bdhB strongly impaired solvent production and that a triple mutant ΔbdhA ΔbdhB ΔbdhC was even more affected. Complementation experiments confirmed the key role of these enzymes and the capacity of each bdh copy to fully restore efficient ABE fermentation in the triple deletion strain.IMPORTANCE An efficient CRISPR-Cas9 editing tool based on a previous two-plasmid system was developed for Clostridium acetobutylicum and used to investigate the contribution of chromosomal butanol dehydrogenase genes during solventogenesis. Thanks to the control of cas9 expression by inducible promoters and of Cas9-guide RNA (gRNA) complex activity by an anti-CRISPR protein, this genetic tool allows relatively fast, precise, markerless, and iterative modifications in the genome of this bacterium and potentially of other bacterial species. As an example, scarless mutants in which up to three genes coding for alcohol dehydrogenases are inactivated were then constructed and characterized through fermentation assays. The results obtained show that in C. acetobutylicum, other enzymes than the well-known AdhE1 are crucial for the synthesis of alcohol and, more globally, to perform efficient solventogenesis.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas/genética , Clostridium acetobutylicum/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas Bacterianas/metabolismo , Clostridium acetobutylicum/enzimología , Edición Génica
4.
Nucleic Acids Res ; 46(21): 11553-11565, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30252095

RESUMEN

CLIP-seq methods provide transcriptome-wide snapshots of RNA-protein interactions in live cells. Reverse transcriptases stopping at cross-linked nucleotides sign for RNA-protein binding sites. Reading through cross-linked positions results in false binding site assignments. In the 'monitored enhanced CLIP' (meCLIP) method, a barcoded biotinylated linker is ligated at the 5' end of cross-linked RNA fragments to purify RNA prior to the reverse transcription. cDNAs keeping the barcode sequence correspond to reverse transcription read-throughs. Read through occurs in unpredictable proportions, representing up to one fourth of total reads. Filtering out those reads strongly improves reliability and precision in protein binding site assignment.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Inmunoprecipitación/métodos , Proteínas/metabolismo , ARN/metabolismo , Sitios de Unión , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Complementario , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Humanos , Oligonucleótidos/química , Oligonucleótidos/genética , Proteínas/química , Proteínas/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , Transcripción Reversa , Transactivadores/genética , Transactivadores/metabolismo
5.
Front Bioeng Biotechnol ; 11: 1226889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476481

RESUMEN

Owing to their inherent capacity to make invisible biological processes visible and quantifiable, fluorescent reporter systems have numerous applications in biotechnology. For classical fluorescent protein systems (i.e., GFP and derivatives), chromophore maturation is O2-dependent, restricting their applications to aerobic organisms. In this work, we pioneered the use of the oxygen-independent system FAST (Fluorescence Activating and absorption Shifting tag) in the thermophilic anaerobe Thermoanaerobacter kivui. We developed a modular cloning system that was used to easily clone a library of FAST expression cassettes in an E. coli-Thermoanaerobacter shuttle plasmid. FAST-mediated fluorescence was then assessed in vivo in T. kivui, and we observed bright green and red fluorescence for cells grown at 55°C. Next, we took advantage of this functional reporter system to characterize a set of homologous and heterologous promoters by quantifying gene expression, expanding the T. kivui genetic toolbox. Low fluorescence at 66°C (Topt for T. kivui) was subsequently investigated at the single-cell level using flow cytometry and attributed to plasmid instability at higher temperatures. Adaptive laboratory evolution circumvented this issue and drastically enhanced fluorescence at 66°C. Whole plasmid sequencing revealed the evolved strain carried functional plasmids truncated at the Gram-positive origin of replication, that could however not be linked to the increased fluorescence displayed by the evolved strain. Collectively, our work demonstrates the applicability of the FAST fluorescent reporter systems to T. kivui, paving the way for further applications in thermophilic anaerobes.

6.
FEMS Microbes ; 3: xtac013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37332505

RESUMEN

Converting plant biomass into biofuels and biochemicals via microbial fermentation has received considerable attention in the quest for finding renewable energies and materials. Most approaches have so far relied on cultivating a single microbial strain, tailored for a specific purpose. However, this contrasts to how nature works, where microbial communities rather than single species perform all tasks. In artificial coculture systems, metabolic synergies are rationally designed by carefully selecting and simultaneously growing different microbes, taking advantage of the broader metabolic space offered by the use of multiple organisms. 1-propanol and 2-propanol, as biofuels and precursors for propylene, are interesting target molecules to valorize plant biomass. Some solventogenic Clostridia can naturally produce 2-propanol in the so-called Isopropanol-Butanol-Ethanol (IBE) fermentation, by coupling 2-propanol synthesis to acetate and butyrate reduction into ethanol and 1-butanol. In this work, we hypothesized propanoate would be converted into 1-propanol by the IBE metabolism, while driving at the same time 2-propanol synthesis. We first verified this hypothesis and chose two propionic acid bacteria (PAB) strains as propanoate producers. While consecutive PAB and IBE fermentations only resulted in low propanol titers, coculturing Propionibacterium freudenreichii and Clostridium beijerinckii at various inoculation ratios yielded much higher solvent concentrations, with as much as 21 g/l of solvents (58% increase compared to C. beijerinckii monoculture) and 12 g/l of propanol (98% increase). Taken together, our results underline how artificial cocultures can be used to foster metabolic synergies, increasing fermentative performances and orienting the carbon flow towards a desired product.

7.
Microbiol Spectr ; 10(2): e0228821, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35412381

RESUMEN

Transcription initiation is a tightly regulated process that is crucial for many aspects of prokaryotic physiology. High-throughput transcription start site (TSS) mapping can shed light on global and local regulation of transcription initiation, which in turn may help us understand and predict microbial behavior. In this study, we used Capp-Switch sequencing to determine the TSS positions in the genomes of three model solventogenic clostridia: Clostridium acetobutylicum ATCC 824, C. beijerinckii DSM 6423, and C. beijerinckii NCIMB 8052. We first refined the approach by implementing a normalization pipeline accounting for gene expression, yielding a total of 12,114 mapped TSSs across the species. We further compared the distributions of these sites in the three strains. Results indicated similar distribution patterns at the genome scale, but also some sharp differences, such as for the butyryl-CoA synthesis operon, particularly when comparing C. acetobutylicum to the C. beijerinckii strains. Lastly, we found that promoter structure is generally poorly conserved between C. acetobutylicum and C. beijerinckii. A few conserved promoters across species are discussed, showing interesting examples of how TSS determination and comparison can improve our understanding of gene expression regulation at the transcript level. IMPORTANCE Solventogenic clostridia have been employed in industry for more than a century, initially being used in the acetone-butanol-ethanol (ABE) fermentation process for acetone and butanol production. Interest in these bacteria has recently increased in the context of green chemistry and sustainable development. However, our current understanding of their genomes and physiology limits their optimal use as industrial solvent production platforms. The gene regulatory mechanisms of solventogenesis are still only partly understood, impeding efforts to increase rates and yields. Genome-wide mapping of transcription start sites (TSSs) for three model solventogenic Clostridium strains is an important step toward understanding mechanisms of gene regulation in these industrially important bacteria.


Asunto(s)
Acetona , Clostridium acetobutylicum , Acetona/metabolismo , Bacterias Anaerobias , Butanoles/metabolismo , Clostridium/genética , Clostridium/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Fermentación
8.
Sci Rep ; 9(1): 7228, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31076628

RESUMEN

The solventogenic C. beijerinckii DSM 6423, a microorganism that naturally produces isopropanol and butanol, was previously modified by random mutagenesis. In this work, one of the resulting mutants was characterized. This strain, selected with allyl alcohol and designated as the AA mutant, shows a dominant production of acids, a severely diminished butanol synthesis capacity, and produces acetone instead of isopropanol. Interestingly, this solvent-deficient strain was also found to have a limited consumption of two carbohydrates and to be still able to form spores, highlighting its particular phenotype. Sequencing of the AA mutant revealed point mutations in several genes including CIBE_0767 (sigL), which encodes the σ54 sigma factor. Complementation with wild-type sigL fully restored solvent production and sugar assimilation and RT-qPCR analyses revealed its transcriptional control of several genes related to solventogensis, demonstrating the central role of σ54 in C. beijerinckii DSM 6423. Comparative genomics analysis suggested that this function is conserved at the species level, and this hypothesis was further confirmed through the deletion of sigL in the model strain C. beijerinckii NCIMB 8052.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Clostridium beijerinckii/metabolismo , Factor sigma/metabolismo , 2-Propanol/metabolismo , Proteínas Bacterianas/genética , Butanoles/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium beijerinckii/genética , Etanol/metabolismo , Edición Génica/métodos , Glucosa/metabolismo , Fenotipo , Mutación Puntual , Factor sigma/deficiencia , Factor sigma/genética , Solventes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA