Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Addict Biol ; 28(5): e13279, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37186441

RESUMEN

Relapse to drug seeking involves transient synaptic remodelling that occurs in response to drug-associated cues. This remodelling includes activation of matrix metalloproteinases (MMPs) to initiate catalytic signalling in the extracellular matrix in the nucleus accumbens core (NAcore). We hypothesized that MMP activity would be increased in the NAcore during cue-induced methamphetamine (meth) seeking in a rat model of meth use and relapse. Male and female rats had indwelling jugular catheters and bilateral intracranial cannula targeting the NAcore surgically implanted. Following recovery, rats underwent meth or saline self-administration (6 h/day for 15 days) in which active lever responding was paired with a light + tone stimulus complex, followed by home cage abstinence. Testing occurred after 7 or 30 days of abstinence. On test day, rats were microinjected with a fluorescein isothiocyanate (FITC)-quenched gelatin substrate that fluoresces following cleavage by MMP-2,9, allowing for the quantification of gelatinase activity during cued-relapse testing. MMP-2,9 activity was significantly increased in the NAcore by meth cues presentation after 7 and 30 days of abstinence, indicating that remodelling by MMPs occurs during presentation of meth associated cues. Surprisingly, although cue-induced seeking increased between Days 7 and 30, MMP-2,9 activity did not increase. These findings indicate that although MMP activation is elicited during meth cue-induced seeking, MMP activation did not parallel the meth seeking that occurs during extended drug abstinence.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metanfetamina , Ratas , Masculino , Femenino , Animales , Metanfetamina/farmacología , Ratas Sprague-Dawley , Señales (Psicología) , Metaloproteinasa 2 de la Matriz , Comportamiento de Búsqueda de Drogas , Recurrencia , Autoadministración , Núcleo Accumbens , Estimulantes del Sistema Nervioso Central/farmacología , Extinción Psicológica
2.
Eur J Neurosci ; 50(3): 2036-2044, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-29514413

RESUMEN

The alarming increase in heroin overdoses in the USA is a reminder of the need for efficacious and novel treatments for opiate addiction. This may reflect the relatively poor understanding of the neural basis of heroin, as compared to cocaine, seeking behaviour. While cocaine reinforcement depends on the mesolimbic system, well-established cocaine seeking is dependent on dorsolateral striatum (aDLS) dopamine-dependent mechanisms which are disrupted by N-acetylcysteine, through normalisation of corticostriatal glutamate homeostasis. However, it is unknown whether a functional recruitment of aDLS dopamine-dependent control over instrumental responding also occurs for heroin seeking, even though heroin reinforcement does not depend on the mesolimbic dopamine system. Lister Hooded rats acquired heroin self-administration and were subsequently trained to seek heroin daily over prolonged periods of time under the control of drug-paired cues, as measured under a second-order schedule of reinforcement. At different stages of training, that is, early on and when heroin seeking behaviour was well established, we measured the sensitivity of drug-seeking responses to either bilateral aDLS infusions of the dopamine receptor antagonist α-flupenthixol (5, 10 and 15 µg/side) or systemic administration of N-acetylcysteine (30, 60 and 90 mg/kg). The results demonstrate that control over heroin seeking behaviour devolves to aDLS dopamine-dependent mechanisms after extended training. Further aDLS-dependent well-established, cue-controlled heroin seeking was disrupted by N-acetylcysteine. Comparison with previous data on cocaine suggests that the development of drug seeking habits and the alteration of corticostriatal glutamate homeostasis, which is restored by N-acetylcysteine, are quantitatively similar between heroin and cocaine.


Asunto(s)
Acetilcisteína/farmacología , Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Animales , Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Inhibidores de Captación de Dopamina/farmacología , Heroína , Masculino , Refuerzo en Psicología , Autoadministración
3.
Trends Pharmacol Sci ; 43(1): 56-68, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34753604

RESUMEN

Treatments for substance use and stress disorders are based on ameliorating behavioral symptoms, not on reversing the synaptic pathology that has the potential to cure disorders. This failing arises in part from a research focus on how pre- and postsynaptic physiology is changed even though key neuropathology exists in the perisynaptic neuropil that homeostatically regulates synaptic transmission. We explore recent findings from the substance use and stress disorder literature pointing to a key role for perisynaptic astroglia and signaling in the extracellular matrix (ECM) in regulating synaptic pathology. We conclude that drugs and stress initiate long-lasting changes in brain synapses via enduring neuroadaptations in astroglia and the ECM, and that modulating extrasynaptic regulators may be therapeutically useful.


Asunto(s)
Trastornos Relacionados con Sustancias , Sinapsis , Astrocitos , Encéfalo , Humanos , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Sinapsis/patología , Transmisión Sináptica/fisiología
4.
Neuropsychopharmacology ; 47(5): 1037-1045, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35145212

RESUMEN

Individuals diagnosed with post-traumatic stress disorder (PTSD) are often comorbid for substance use disorders. Cannabis is widely used by PSTD patients, and the literature is mixed on whether cannabis use ameliorates or exacerbates patient responses to stress-associated conditioned stimuli (stress-CS). We determined if cannabis use affects responsivity to stress-CS in rats receiving 2 h stress in the presence of an odor stress-CS. Three weeks after acute stress, rats self-administered cannabinoids (delta9-tetrahydrocannabinol + cannabidiol; THC + CBD) for 15 days, and the stressed males consumed more THC + CBD than sham males. We then used the stress-CS or a novel odor (stress-NS) to reinstate THC + CBD seeking. Surprisingly, the stress-NS reinstated THC + CBD seeking, an effect blocked by N-acetylcysteine. Moreover, the stress-CS inhibited THC + CBD-CS induced reinstatement. To determine if the unexpected effects of stress-NS and -CS resulted from THC + CBD altering conditioned stress, the effect of THC + CBD use on stress-NS/CS-induced coping behaviors and spine morphology was quantified. In THC + CBD-treated rats, stress-NS increased active coping (burying). Conversely, stress-CS reduced active coping and increased passive coping (immobility) and other behavioral parameters associated with stress responses, including self-grooming and defecation. Transient spine head expansion in nucleus accumbens core is necessary for cue-induced drug seeking, and THC + CBD self-administration prevented the increase in head diameter by stress-CS in control rats. These data show THC + CBD self-administration altered the salience of environmental cues, causing neutral cues to promote active behavior (drug seeking and burying) and stress-CS to switch from active to passive behavior (inhibiting drug seeking and immobilization). We hypothesize that cannabis may exacerbate conditioned stress responses.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Animales , Cannabidiol/farmacología , Agonistas de Receptores de Cannabinoides , Dronabinol/farmacología , Alucinógenos/farmacología , Humanos , Masculino , Ratas
5.
Neuropsychopharmacology ; 46(10): 1848-1856, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34226657

RESUMEN

Exposure to acute stress can increase vulnerability to develop or express many psychiatric disorders, including post-traumatic stress disorder. We hypothesized that stress-induced psychiatric vulnerability is associated with enduring neuroplasticity in the nucleus accumbens core because stress exposure can alter drug addiction-related behaviors that are associated with accumbens synaptic plasticity. We used a single 2-h stress session and 3 weeks later exposed male and female rats to stress-conditioned odors in a modified defensive burying task, and quantified both active and avoidant coping strategies. We measured corticosterone, dendritic spine and astrocyte morphology in accumbens, and examined reward sensitivity using a sucrose two-bottle choice and operant sucrose self-administration. Exposure to stress odor increased burying (active coping) and immobility (avoidant coping) in the defensive burying task in female and male rats. Systemic corticosterone was transiently increased by both ongoing acute restraint stress and stress-conditioned odors. Three weeks after administering acute restraint stress, we observed increased dendritic spine density and head diameter, and decreased synaptic association with astroglia and the astroglial glutamate transporter, GLT-1. Exposure to conditioned stress further increased head diameter without affecting spine density or astroglial morphology, and this increase by conditioned stress was correlated with burying behavior. Finally, we found that stress-exposed females have a preference for sweet solutions and higher motivation to seek sucrose than stressed male rats. We conclude that acute stress produced enduring plasticity in accumbens postsynapses and associated astroglia. Moreover, conditioned stress odors induced active behavioral coping strategies that were correlated with dendritic spine morphology.


Asunto(s)
Señales (Psicología) , Plasticidad Neuronal , Animales , Comportamiento de Búsqueda de Drogas , Femenino , Masculino , Núcleo Accumbens , Ratas , Ratas Sprague-Dawley
6.
Biol Psychiatry ; 89(10): 947-958, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33579535

RESUMEN

BACKGROUND: Seeking addictive drugs is regulated by synaptic plasticity in the nucleus accumbens core and involves distinct plasticity in D1 and D2 receptor-expressing medium spiny neurons (D1/2-MSNs). However, it is unknown how differential plasticity between the two cell types is coordinated. Synaptic plasticity and seeking behavior induced by drug-paired cues depends not only on plasticity in the canonical pre- and postsynapse, but also on cue-induced changes in astrocytes and the extracellular matrix adjacent to the synapse. Drug cue-induced signaling in the extracellular matrix is regulated by catalytic activity of matrix metalloproteinases MMP-2,9. We hypothesized that the cell type-specific synaptic plasticity is associated with parallel cell-specific activity of MMP-2 and MMP-9. METHODS: Transgenic rats were trained on a heroin self-administration protocol in which a light/tone cue was paired with heroin delivery, followed by 2 weeks of drug withdrawal, and then reinstated to heroin-conditioned cues. Confocal microscopy was used to make morphological measurements in membrane reporter-transduced D1- and D2-MSNs and astrocytes, and MMP-2,9 gelatinase activity adjacent to cell surfaces was quantified using in vivo zymography. RESULTS: Presenting heroin-paired cues transiently increased MMP-9 activity around D1-MSN dendritic spines and synapse-proximal astroglial processes. Conversely, extinction training induced long-lasting increases in MMP-2 activity adjacent to D2-MSN synapses. Moreover, heroin-paired cues increased tissue inhibitor of metalloproteinases TIMP-1,2, which caused transient inhibition of MMP-2 activity around D2-MSNs during cue-induced heroin seeking. CONCLUSIONS: The differential regulation of heroin seeking and extinguished seeking by different MMP subtypes on distinct cell populations poses MMP-2,9 activity as an important mediator and contributor in heroin-induced cell-specific synaptic plasticity.


Asunto(s)
Comportamiento de Búsqueda de Drogas , Heroína , Animales , Señales (Psicología) , Extinción Psicológica , Metaloproteinasas de la Matriz , Núcleo Accumbens , Ratas , Ratas Sprague-Dawley , Autoadministración , Sinapsis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA