Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 583(7815): 310-313, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32494006

RESUMEN

The U2 small nuclear ribonucleoprotein (snRNP) has an essential role in the selection of the precursor mRNA branch-site adenosine, the nucleophile for the first step of splicing1. Stable addition of U2 during early spliceosome formation requires the DEAD-box ATPase PRP52-7. Yeast U2 small nuclear RNA (snRNA) nucleotides that form base pairs with the branch site are initially sequestered in a branchpoint-interacting stem-loop (BSL)8, but whether the human U2 snRNA folds in a similar manner is unknown. The U2 SF3B1 protein, a common mutational target in haematopoietic cancers9, contains a HEAT domain (SF3B1HEAT) with an open conformation in isolated SF3b10, but a closed conformation in spliceosomes11, which is required for stable interaction between U2 and the branch site. Here we report a 3D cryo-electron microscopy structure of the human 17S U2 snRNP at a core resolution of 4.1 Å and combine it with protein crosslinking data to determine the molecular architecture of this snRNP. Our structure reveals that SF3B1HEAT interacts with PRP5 and TAT-SF1, and maintains its open conformation in U2 snRNP, and that U2 snRNA forms a BSL that is sandwiched between PRP5, TAT-SF1 and SF3B1HEAT. Thus, substantial remodelling of the BSL and displacement of BSL-interacting proteins must occur to allow formation of the U2-branch-site helix. Our studies provide a structural explanation of why TAT-SF1 must be displaced before the stable addition of U2 to the spliceosome, and identify RNP rearrangements facilitated by PRP5 that are required for stable interaction between U2 and the branch site.


Asunto(s)
Microscopía por Crioelectrón , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/ultraestructura , Secuencia de Bases , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Transactivadores/química , Transactivadores/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(6): 2948-2956, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31974312

RESUMEN

The spliceosome consists of five small RNAs and more than 100 proteins. Almost 50% of the human spliceosomal proteins were predicted to be intrinsically disordered or to contain disordered regions, among them the G-patch protein Spp2. The G-patch region of Spp2 binds to the DEAH-box ATPase Prp2, and both proteins together are essential for promoting the transition from the Bact to the catalytically active B* spliceosome. Here we show by circular dichroism and nuclear magnetic resonance (NMR) spectroscopy that Spp2 is intrinsically disordered in solution. Crystal structures of a complex consisting of Prp2-ADP and the G-patch domain of Spp2 demonstrate that the G-patch gains a defined fold when bound to Prp2. While the N-terminal region of the G-patch always folds into an α-helix in five different crystal structures, the C-terminal part is able to adopt two alternative conformations. NMR studies further revealed that the N-terminal part of the Spp2 G-patch, which is the most conserved region in different G-patch proteins, transiently samples helical conformations, possibly facilitating a conformational selection binding mechanism. The structural analysis unveils the role of conserved residues of the G-patch in the dynamic interaction mode of Spp2 with Prp2, which is vital to maintain the binding during the Prp2 domain movements needed for RNA translocation.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Unión Proteica , Pliegue de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
3.
J Biol Chem ; 293(16): 5781-5792, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29514981

RESUMEN

Utilization of energy-rich carbon sources such as glucose is fundamental to the evolutionary success of bacteria. Glucose can be catabolized via glycolysis for feeding the intermediary metabolism. The methylglyoxal synthase MgsA produces methylglyoxal from the glycolytic intermediate dihydroxyacetone phosphate. Methylglyoxal is toxic, requiring stringent regulation of MgsA activity. In the Gram-positive bacterium Bacillus subtilis, an interaction with the phosphoprotein Crh controls MgsA activity. In the absence of preferred carbon sources, Crh is present in the nonphosphorylated state and binds to and thereby inhibits MgsA. To better understand the mechanism of regulation of MgsA, here we performed biochemical and structural analyses of B. subtilis MgsA and of its interaction with Crh. Our results indicated that MgsA forms a hexamer (i.e. a trimer of dimers) in the crystal structure, whereas it seems to exist in an equilibrium between a dimer and hexamer in solution. In the hexamer, two alternative dimers could be distinguished, but only one appeared to prevail in solution. Further analysis strongly suggested that the hexamer is the biologically active form. In vitro cross-linking studies revealed that Crh interacts with the N-terminal helices of MgsA and that the Crh-MgsA binding inactivates MgsA by distorting and thereby blocking its active site. In summary, our results indicate that dimeric and hexameric MgsA species exist in an equilibrium in solution, that the hexameric species is the active form, and that binding to Crh deforms and blocks the active site in MgsA.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Oxígeno/metabolismo , Fosfoproteínas/metabolismo , Mapas de Interacción de Proteínas , Bacillus subtilis/química , Proteínas Bacterianas/química , Ciclo del Carbono , Liasas de Carbono-Oxígeno/química , Cristalografía por Rayos X , Modelos Moleculares , Fosfoproteínas/química , Conformación Proteica , Multimerización de Proteína
4.
Biotechnol Bioeng ; 116(7): 1684-1697, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30882893

RESUMEN

Cathepsin D has been identified as a challenge to remove in downstream bioprocessing of monoclonal antibodies (mAbs) due to interactions with some mAbs. This study focused on investigating the mechanisms of interaction between cathepsin D and two industrial mAbs using a combined experimental and computational approach. Surface plasmon resonance was used to study the impact of pH and salt concentration on these protein-protein interactions. While salt had a moderate effect on the interactions with one of the mAbs, the other mAb demonstrated highly salt-dependent association behavior. Cathepsin D binding to the mAbs was also seen to be highly pH dependent, with operation at pH 9 resulting in a significant decrease in the binding affinity. Protein-protein docking simulations identified three interaction sites on both mAbs; near the complementarity determining region (CDR), in the hinge, and in the CH 3 domain. In contrast, only one face of cathepsin D was identified to interact with all the three sites on the mAbs. Surface property analysis revealed that the binding regions on the mAbs contained strong hydrophobic clusters and were predominantly negatively charged. In contrast, the binding site on cathepsin D was determined to be highly positively charged and hydrophobic, indicating that these protein-protein interactions were likely due to a combination of hydrophobic and electrostatic interactions. Finally, covalent crosslinking coupled with mass spectrometry was used to validate the docking predictions and to further investigate the regions of interaction involved in mAb-cathepsin D binding. A strong agreement was observed between the two approaches, and the CDR loops were identified to be important for cathepsin D interactions. This study establishes a combined experimental and computational platform that can be used to probe mAb-host cell protein (HCP) interactions of importance in biomanufacturing.


Asunto(s)
Anticuerpos Monoclonales/química , Catepsina D/química , Resonancia por Plasmón de Superficie , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Dominios Proteicos , Electricidad Estática
5.
Proc Natl Acad Sci U S A ; 112(24): 7501-6, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26034266

RESUMEN

The structure, dynamic behavior, and spatial organization of microtubules are regulated by microtubule-associated proteins. An important microtubule-associated protein is the protein Tau, because its microtubule interaction is impaired in the course of Alzheimer's disease and several other neurodegenerative diseases. Here, we show that Tau binds to microtubules by using small groups of evolutionary conserved residues. The binding sites are formed by residues that are essential for the pathological aggregation of Tau, suggesting competition between physiological interaction and pathogenic misfolding. Tau residues in between the microtubule-binding sites remain flexible when Tau is bound to microtubules in agreement with a highly dynamic nature of the Tau-microtubule interaction. By binding at the interface between tubulin heterodimers, Tau uses a conserved mechanism of microtubule polymerization and, thus, regulation of axonal stability and cell morphology.


Asunto(s)
Microtúbulos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Unión Competitiva , Fenómenos Biofísicos , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Porcinos , Vinblastina/metabolismo , Proteínas tau/química , Proteínas tau/genética
6.
Mol Cell Proteomics ; 14(12): 3196-210, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26450613

RESUMEN

Protein-RNA cross-linking by UV irradiation at 254 nm wavelength has been established as an unbiased method to identify proteins in direct contact with RNA, and has been successfully applied to investigate the spatial arrangement of protein and RNA in large macromolecular assemblies, e.g. ribonucleoprotein-complex particles (RNPs). The mass spectrometric analysis of such peptide-RNA cross-links provides high resolution structural data to the point of mapping protein-RNA interactions to specific peptides or even amino acids. However, the approach suffers from the low yield of cross-linking products, which can be addressed by improving enrichment and analysis methods. In the present article, we introduce dithiothreitol (DTT) as a potent protein-RNA cross-linker. In order to evaluate the efficiency and specificity of DTT, we used two systems, a small synthetic peptide from smB protein incubated with U1 snRNA oligonucleotide and native ribonucleoprotein complexes from S. cerevisiae. Our results unambiguously show that DTT covalently participates in cysteine-uracil crosslinks, which is observable as a mass increment of 151.9966 Da (C(4)H(8)S(2)O(2)) upon mass spectrometric analysis. DTT presents advantages for cross-linking of cysteine containing regions of proteins. This is evidenced by comparison to experiments where (tris(2-carboxyethyl)phosphine) is used as reducing agent, and significantly less cross-links encompassing cysteine residues are found. We further propose insertion of DTT between the cysteine and uracil reactive sites as the most probable structure of the cross-linking products.


Asunto(s)
Reactivos de Enlaces Cruzados , Ditiotreitol , Proteínas/metabolismo , ARN/metabolismo , Cisteína/química , Cisteína/metabolismo , Espectrometría de Masas , Proteínas/química , ARN/química , Uracilo/química , Uracilo/metabolismo
7.
Nucleic Acids Res ; 42(2): 1162-79, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24165877

RESUMEN

Splicing of precursor messenger RNA is a hallmark of eukaryotic cells, which is carried out by the spliceosome, a multi-megadalton ribonucleoprotein machinery. The splicing reaction removes non-coding regions (introns) and ligates coding regions (exons). The spliceosome is a highly dynamic ribonucleoprotein complex that undergoes dramatic structural changes during its assembly, the catalysis and its disassembly. The transitions between the different steps during the splicing cycle are promoted by eight conserved DExD/H box ATPases. The DEAH-box protein Prp43 is responsible for the disassembly of the intron-lariat spliceosome and its helicase activity is activated by the G-patch protein Ntr1. Here, we investigate the activation of Prp43 by Ntr1 in the presence and absence of RNA substrate by functional assays and structural proteomics. Residues 51-110 of Ntr1 were identified to be the minimal fragment that induces full activation. We found protein-protein cross-links that indicate that Prp43 interacts with the G-patch motif of Ntr1 through its C-terminal domains. Additionally, we report on functionally important RNA binding residues in both proteins and propose a model for the activation of the helicase.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Activación Enzimática , Proteínas Intrínsecamente Desordenadas/química , Espectrometría de Masas , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , ARN/metabolismo
8.
Anal Bioanal Chem ; 407(24): 7307-18, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26215169

RESUMEN

As an enzyme superfamily, proteases are rivaled only by kinases in terms of their abundance within the human genome. Two ratiometric quantum dot (QD) Förster resonance energy transfer-based sensors designed to monitor the activity of the proteolytic enzymes collagenase and elastase are investigated here. Given the unique material constraints of these sensing constructs, assays are realized utilizing excess enzyme and fixed substrate in progress curve format to yield enzyme specificity or k cat/K m ratios. The range of k cat/Km values derived is 0.5-1.1 mM(-1) s(-1) for the collagenase sensor and 3.7-4.2 mM(-1) s(-1) for the elastase sensor. Of greater interest is the observation that the elastase sensor can be well represented by the Michaelis-Menten model while the collagenase sensor cannot. The latter demonstrates increased specificity at higher peptide substrate/QD loading values and an apparent QD-caused reversible inhibition as the reaction progresses. Understanding the detailed kinetic mechanisms that underpin these types of sensors will be important especially for their further quantitative utilization.


Asunto(s)
Técnicas Biosensibles , Puntos Cuánticos , Cinética , Proteolisis , Espectrometría de Fluorescencia
9.
J Biol Chem ; 288(5): 2994-3002, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23209282

RESUMEN

Misfolding of the natively α-helical prion protein into a ß-sheet rich isoform is related to various human diseases such as Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker syndrome. In humans, the disease phenotype is modified by a methionine/valine polymorphism at codon 129 of the prion protein gene. Using a combination of hydrogen/deuterium exchange coupled to NMR spectroscopy, hydroxyl radical probing detected by mass spectrometry, and site-directed mutagenesis, we demonstrate that stop mutants of the human prion protein have a conserved amyloid core. The 129 residue is deeply buried in the amyloid core structure, and its mutation strongly impacts aggregation. Taken together the data support a critical role of the polymorphic residue 129 of the human prion protein in aggregation and disease.


Asunto(s)
Amiloide/genética , Codón de Terminación/genética , Mutación/genética , Polimorfismo Genético , Priones/genética , Secuencia de Aminoácidos , Centrifugación , Humanos , Metionina/genética , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Priones/química , Estructura Cuaternaria de Proteína , Solventes
10.
Nat Commun ; 9(1): 4532, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382094

RESUMEN

The molecular chaperone Hsp90 is critical for the maintenance of cellular homeostasis and represents a promising drug target. Despite increasing knowledge on the structure of Hsp90, the molecular basis of substrate recognition and pro-folding by Hsp90/co-chaperone complexes remains unknown. Here, we report the solution structures of human full-length Hsp90 in complex with the PPIase FKBP51, as well as the 280 kDa Hsp90/FKBP51 complex bound to the Alzheimer's disease-related protein Tau. We reveal that the FKBP51/Hsp90 complex, which synergizes to promote toxic Tau oligomers in vivo, is highly dynamic and stabilizes the extended conformation of the Hsp90 dimer resulting in decreased Hsp90 ATPase activity. Within the ternary Hsp90/FKBP51/Tau complex, Hsp90 serves as a scaffold that traps the PPIase and nucleates multiple conformations of Tau's proline-rich region next to the PPIase catalytic pocket in a phosphorylation-dependent manner. Our study defines a conceptual model for dynamic Hsp90/co-chaperone/client recognition.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/toxicidad , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/toxicidad , Proteínas tau/química , Proteínas tau/toxicidad , Biocatálisis/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Conformación Proteica , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas tau/metabolismo
11.
Science ; 351(6280): 1416-20, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26912367

RESUMEN

The U4/U6.U5 triple small nuclear ribonucleoprotein (tri-snRNP) is a major spliceosome building block. We obtained a three-dimensional structure of the 1.8-megadalton human tri-snRNP at a resolution of 7 angstroms using single-particle cryo-electron microscopy (cryo-EM). We fit all known high-resolution structures of tri-snRNP components into the EM density map and validated them by protein cross-linking. Our model reveals how the spatial organization of Brr2 RNA helicase prevents premature U4/U6 RNA unwinding in isolated human tri-snRNPs and how the ubiquitin C-terminal hydrolase-like protein Sad1 likely tethers the helicase Brr2 to its preactivation position. Comparison of our model with cryo-EM three-dimensional structures of the Saccharomyces cerevisiae tri-snRNP and Schizosaccharomyces pombe spliceosome indicates that Brr2 undergoes a marked conformational change during spliceosome activation, and that the scaffolding protein Prp8 is also rearranged to accommodate the spliceosome's catalytic RNA network.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U5/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , ARN Helicasas DEAD-box/química , Activación Enzimática , Células HeLa , Humanos , Modelos Moleculares , Factores de Elongación de Péptidos/química , Conformación Proteica , ARN Helicasas/química , Proteínas de Unión al ARN/química , Ribonucleoproteínas Nucleares Pequeñas/química , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/metabolismo , Ubiquitina Tiolesterasa/química
12.
Cell Rep ; 13(4): 690-702, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26489467

RESUMEN

CRM1 is the major nuclear export receptor. During translocation through the nuclear pore, transport complexes transiently interact with phenylalanine-glycine (FG) repeats of multiple nucleoporins. On the cytoplasmic side of the nuclear pore, CRM1 tightly interacts with the nucleoporin Nup214. Here, we present the crystal structure of a 117-amino-acid FG-repeat-containing fragment of Nup214, in complex with CRM1, Snurportin 1, and RanGTP at 2.85 Å resolution. The structure reveals eight binding sites for Nup214 FG motifs on CRM1, with intervening stretches that are loosely attached to the transport receptor. Nup214 binds to N- and C-terminal regions of CRM1, thereby clamping CRM1 in a closed conformation and stabilizing the export complex. The role of conserved hydrophobic pockets for the recognition of FG motifs was analyzed in biochemical and cell-based assays. Comparative studies with RanBP3 and Nup62 shed light on specificities of CRM1-nucleoporin binding, which serves as a paradigm for transport receptor-nucleoporin interactions.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transporte Activo de Núcleo Celular/genética , Sitios de Unión/genética , Sitios de Unión/fisiología , Transporte Biológico/genética , Transporte Biológico/fisiología , Núcleo Celular/química , Cristalografía por Rayos X , Humanos , Carioferinas/química , Proteínas de Complejo Poro Nuclear/química , Unión Proteica , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/química , Proteína Exportina 1
13.
Nat Struct Mol Biol ; 22(2): 138-44, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25599396

RESUMEN

Aquarius is a multifunctional putative RNA helicase that binds precursor-mRNA introns at a defined position. Here we report the crystal structure of human Aquarius, revealing a central RNA helicase core and several unique accessory domains, including an ARM-repeat domain. We show that Aquarius is integrated into spliceosomes as part of a pentameric intron-binding complex (IBC) that, together with the ARM domain, cross-links to U2 snRNP proteins within activated spliceosomes; this suggests that the latter aid in positioning Aquarius on the intron. Aquarius's ARM domain is essential for IBC formation, thus indicating that it has a key protein-protein-scaffolding role. Finally, we provide evidence that Aquarius is required for efficient precursor-mRNA splicing in vitro. Our findings highlight the remarkable structural adaptations of a helicase to achieve position-specific recruitment to a ribonucleoprotein complex and reveal a new building block of the human spliceosome.


Asunto(s)
ARN Helicasas/química , ARN Helicasas/metabolismo , Empalmosomas/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Cristalografía por Rayos X , Humanos , Intrones/genética , Unión Proteica/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Helicasas/genética , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA