Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
New Phytol ; 238(5): 2080-2098, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36908092

RESUMEN

Glycosyltransferases are nature's versatile tools to tailor the functionalities of proteins, carbohydrates, lipids, and small molecules by transferring sugars. Prominent substrates are hydroxycoumarins such as scopoletin, which serve as natural plant protection agents. Similarly, C13-apocarotenoids, which are oxidative degradation products of carotenoids/xanthophylls, protect plants by repelling pests and attracting pest predators. We show that C13-apocarotenoids interact with the plant glycosyltransferase NbUGT72AY1 and induce conformational changes in the enzyme catalytic center ultimately reducing its inherent UDP-α-d-glucose glucohydrolase activity and increasing its catalytic activity for productive hydroxycoumarin substrates. By contrast, C13-apocarotenoids show no effect on the catalytic activity toward monolignol lignin precursors, which are competitive substrates. In vivo studies in tobacco plants (Nicotiana benthamiana) confirmed increased glycosylation activity upon apocarotenoid supplementation. Thus, hydroxycoumarins and apocarotenoids represent specialized damage-associated molecular patterns, as they each provide precise information about the plant compartments damaged by pathogen attack. The molecular basis for the C13-apocarotenoid-mediated interplay of two plant protective mechanisms and their function as allosteric enhancers opens up potential applications of the natural products in agriculture and pharmaceutical industry.


Asunto(s)
Glicosiltransferasas , Lignina , Glicosiltransferasas/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Carotenoides/metabolismo , Nicotiana/metabolismo
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298492

RESUMEN

One of the main obstacles in biocatalysis is the substrate inhibition (SI) of enzymes that play important roles in biosynthesis and metabolic regulation in organisms. The promiscuous glycosyltransferase UGT72AY1 from Nicotiana benthamiana is strongly substrate-inhibited by hydroxycoumarins (inhibitory constant Ki < 20 µM), but only weakly inhibited when monolignols are glucosylated (Ki > 1000 µM). Apocarotenoid effectors reduce the inherent UDP-glucose glucohydrolase activity of the enzyme and attenuate the SI by scopoletin derivatives, which could also be achieved by mutations. Here, we studied the kinetic profiles of different phenols and used the substrate analog vanillin, which has shown atypical Michaelis-Menten kinetics in previous studies, to examine the effects of different ligands and mutations on the SI of NbUGT72AY1. Coumarins had no effect on enzymatic activity, whereas apocarotenoids and fatty acids strongly affected SI kinetics by increasing the inhibition constant Ki. Only the F87I mutant and a chimeric version of the enzyme showed weak SI with the substrate vanillin, but all mutants exhibited mild SI when sinapaldehyde was used as an acceptor. In contrast, stearic acid reduced the transferase activity of the mutants to varying degrees. The results not only confirm the multi-substrate functionality of NbUGT72AY1, but also reveal that the enzymatic activity of this protein can be fine-tuned by external metabolites such as apocarotenoids and fatty acids that affect SI. Since these signals are generated during plant cell destruction, NbUGT72AY1 likely plays an important role in plant defense by participating in the production of lignin in the cell wall and providing direct protection through the formation of toxic phytoalexins.


Asunto(s)
Benzaldehídos , Glucosiltransferasas , Cinética , Glucosiltransferasas/metabolismo , Ácidos Grasos , Especificidad por Sustrato
3.
Microbiology (Reading) ; 167(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33881981

RESUMEN

Micro-organisms contribute to Earth's mineral deposits through a process known as bacteria-induced mineral precipitation (BIMP). It is a complex phenomenon that can occur as a result of a variety of physiological activities that influence the supersaturation state and nucleation catalysis of mineral precipitation in the environment. There is a good understanding of BIMP induced by bacterial metabolism through the control of metal redox states and enzyme-mediated reactions such as ureolysis. However, other forms of BIMP often cannot be attributed to a single pathway but rather appear to be a passive result of bacterial activity, where minerals form as a result of metabolic by-products and surface interactions within the surrounding environment. BIMP from such processes has formed the basis of many new innovative biotechnologies, such as soil consolidation, heavy metal remediation, restoration of historic buildings and even self-healing concrete. However, these applications to date have primarily incorporated BIMP-capable bacteria sampled from the environment, while detailed investigations of the underpinning mechanisms have been lagging behind. This review covers our current mechanistic understanding of bacterial activities that indirectly influence BIMP and highlights the complexity and connectivity between the different cellular and metabolic processes involved. Ultimately, detailed insights will facilitate the rational design of application-specific BIMP technologies and deepen our understanding of how bacteria are shaping our world.


Asunto(s)
Bacterias/metabolismo , Minerales/química , Minerales/metabolismo , Bacterias/genética , Precipitación Química , Oxidación-Reducción , Suelo/química
4.
Metab Eng ; 65: 146-155, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33189879

RESUMEN

Parageobacillus thermoglucosidasius is a genetically tractable thermophile that grows rapidly at elevated temperatures, with a doubling time at 65 °C comparable to the shortest doubling times of Escherichia coli. It is capable of using a wide variety of substrates, including carbohydrate oligomers, and has been developed for the industrial production of ethanol. In this study, P. thermoglucosidasius NCIMB11955 has been engineered to produce the sesquiterpene τ-muurolol by introduction of a heterologous mevalonate pathway constructed using genes from several thermophilic archaea together with a recently characterised thermostable τ-muurolol synthase. P. thermoglucosidasius naturally uses the methylerythritol phosphate pathway for production of the terpene precursor, isopentenyl pyrophosphate, while archaea use a version of the mevalonate pathway. By introducing the orthogonal archaeal pathway it was possible to increase the flux through to sesquiterpene biosynthesis. Construction of such a large metabolic pathway created problems with genetic vector introduction and stability, so recombinant plasmids were introduced by conjugation, and a thermostable serine integrase system was developed for integration of large pathways onto the chromosome. Finally, by making the heterologous pathway maltose-inducible we demonstrate that the new strain is capable of using waste bread directly as an autoinduction carbon source for the production of terpenes in a consolidated bioprocess.


Asunto(s)
Bacillaceae , Terpenos , Pan , Ácido Mevalónico
5.
Microb Cell Fact ; 20(1): 214, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34794448

RESUMEN

BACKGROUND: Microbially induced calcite precipitation (MICP) is an ancient property of bacteria, which has recently gained considerable attention for biotechnological applications. It occurs as a by-product of bacterial metabolism and involves a combination of chemical changes in the extracellular environment, e.g. pH increase, and presence of nucleation sites on the cell surface or extracellular substances produced by the bacteria. However, the molecular mechanisms underpinning MICP and the interplay between the contributing factors remain poorly understood, thus placing barriers to the full biotechnological and synthetic biology exploitation of bacterial biomineralisation. RESULTS: In this study, we adopted a bottom-up approach of systematically engineering Bacillus subtilis, which has no detectable intrinsic MICP activity, for biomineralisation. We showed that heterologous production of urease can induce MICP by local increases in extracellular pH, and this can be enhanced by co-expression of urease accessory genes for urea and nickel uptake, depending on environmental conditions. MICP can be strongly enhanced by biofilm-promoting conditions, which appeared to be mainly driven by production of exopolysaccharide, while the protein component of the biofilm matrix was dispensable. Attempts to modulate the cell surface charge of B. subtilis had surprisingly minor effects, and our results suggest this organism may intrinsically have a very negative cell surface, potentially predisposing it for MICP activity. CONCLUSIONS: Our findings give insights into the molecular mechanisms driving MICP in an application-relevant chassis organism and the genetic elements that can be used to engineer de novo or enhanced biomineralisation. This study also highlights mutual influences between the genetic drivers and the chemical composition of the surrounding environment in determining the speed, spatial distribution and resulting mineral crystals of MICP. Taken together, these data pave the way for future rational design of synthetic precipitator strains optimised for specific applications.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Biomineralización , Carbonato de Calcio/metabolismo , Polisacáridos Bacterianos/metabolismo , Ureasa/metabolismo , Biopelículas , Carbonato de Calcio/química , Precipitación Química , ADN Bacteriano , Ingeniería Genética , Concentración de Iones de Hidrógeno , Microbiología Industrial/métodos , Níquel/metabolismo , Eliminación de Secuencia , Urea/metabolismo
6.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31980427

RESUMEN

Microbially induced calcite precipitation (MICP) has not only helped to shape our planet's geological features but is also a promising technology to address environmental concerns in civil engineering applications. However, limited understanding of the biomineralization capacity of environmental bacteria impedes application. We therefore surveyed the environment for different mechanisms of precipitation across bacteria. The most fundamental difference was in ureolytic ability, where urease-positive bacteria caused rapid, widespread increases in pH, whereas nonureolytic strains produced such changes slowly and locally. These pH shifts correlated well with patterns of precipitation on solid medium. Strikingly, while both mechanisms led to high levels of precipitation, we observed clear differences in the precipitate. Ureolytic bacteria produced homogenous, inorganic fine crystals, whereas the crystals of nonureolytic strains were larger and had a mixed organic/inorganic composition. When representative strains were tested in application for crack healing in cement mortars, nonureolytic bacteria gave robust results, while ureolytic strains showed more variation. This may be explained by our observation that urease activity differed between growth conditions or by the different natures and therefore different material performances of the precipitates. Our results shed light on the breadth of biomineralization activity among environmental bacteria, an important step toward the rational design of bacterially based engineering solutions.IMPORTANCE Biomineralization triggered by bacteria is important in the natural environment and has many applications in industry and in civil and geotechnical engineering. The diversity in biomineralization capabilities of environmental bacteria is, however, not well understood. This study surveyed environmental bacteria for their ability to precipitate calcium carbonate minerals and investigated both the mechanisms and the resulting crystals. We show that while urease activity leads to the fastest precipitation, it is by no means essential. Importantly, the same quantities of calcium carbonate are produced by nonureolytic bacteria, and the resulting crystals appear to have larger volumes and more organic components, which are likely beneficial in specific applications. Testing both precipitation mechanisms in a self-healing concrete application showed that nonureolytic bacteria delivered more robust results. Here, we performed a systematic study of the fundamental differences in biomineralization between environmental bacteria, and we provide important information for the design of bacterially based engineering solutions.


Asunto(s)
Bacterias/metabolismo , Carbonato de Calcio/metabolismo , Microbiología Ambiental , Carbonato de Calcio/química , Precipitación Química
7.
Front Plant Sci ; 14: 1191625, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346124

RESUMEN

Tea (Camellia sinensis) has been an immensely important commercially grown crop for decades. This is due to the presence of essential nutrients and plant secondary metabolites that exhibit beneficial health effects. UDP-glycosyltransferases (UGTs) play an important role in the diversity of such secondary metabolites by catalysing the transfer of an activated sugar donor to acceptor molecules, and thereby creating a huge variety of glycoconjugates. Only in recent years, thanks to the sequencing of the tea plant genome, have there been increased efforts to characterise the UGTs in C. sinensis to gain an understanding of their physiological role and biotechnological potential. Based on the conserved plant secondary product glycosyltransferase (PSPG) motif and the catalytically active histidine in the active site, UGTs of family 1 in C. sinensis are identified here, and shown to cluster into 21 groups in a phylogenetic tree. Building on this, our current understanding of recently characterised C. sinensis UGTs (CsUGTs) is highlighted and a discussion on future perspectives made.

8.
Plant Commun ; 4(3): 100506, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36566353

RESUMEN

Uridine diphosphate-dependent glycosyltransferases (UGTs) mediate the glycosylation of plant metabolites, thereby altering their physicochemical properties and bioactivities. Plants possess numerous UGT genes, with the encoded enzymes often glycosylating multiple substrates and some exhibiting substrate inhibition kinetics, but the biological function and molecular basis of these phenomena are not fully understood. The promiscuous monolignol/phytoalexin glycosyltransferase NbUGT72AY1 exhibits substrate inhibition (Ki) at 4 µM scopoletin, whereas the highly homologous monolignol StUGT72AY2 is inhibited at 190 µM. We therefore used hydrogen/deuterium exchange mass spectrometry and structure-based mutational analyses of both proteins and introduced NbUGT72AY1 residues into StUGT72AY2 and vice versa to study promiscuity and substrate inhibition of UGTs. A single F87I and chimeric mutant of NbUGT72AY1 showed significantly reduced scopoletin substrate inhibition, whereas its monolignol glycosylation activity was almost unaffected. Reverse mutations in StUGT72AY2 resulted in increased scopoletin glycosylation, leading to enhanced promiscuity, which was accompanied by substrate inhibition. Studies of 3D structures identified open and closed UGT conformers, allowing visualization of the dynamics of conformational changes that occur during catalysis. Previously postulated substrate access tunnels likely serve as drainage channels. The results suggest a two-site model in which the second substrate molecule binds near the catalytic site and blocks product release. Mutational studies showed that minor changes in amino acid sequence can enhance the promiscuity of the enzyme and add new capabilities such as substrate inhibition without affecting existing functions. The proposed subfunctionalization mechanism of expanded promiscuity may play a role in enzyme evolution and highlights the importance of promiscuous enzymes in providing new functions.


Asunto(s)
Fitoalexinas , Escopoletina , Escopoletina/metabolismo , Glicosilación , Glicosiltransferasas/química , Plantas/metabolismo
9.
Hortic Res ; 10(9): uhad143, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37691961

RESUMEN

Plants respond to environmental stimuli via the release of volatile organic compounds (VOCs), and neighboring plants constantly monitor and respond to these VOCs with great sensitivity and discrimination. This sensing can trigger increased plant fitness and reduce future plant damage through the priming of their own defenses. The defense mechanism in neighboring plants can either be induced by activation of the regulatory or transcriptional machinery, or it can be delayed by the absorption and storage of VOCs for the generation of an appropriate response later. Despite much research, many key questions remain on the role of VOCs in interplant communication and plant fitness. Here we review recent research on the VOCs induced by biotic (i.e. insects and pathogens) and abiotic (i.e. cold, drought, and salt) stresses, and elucidate the biosynthesis of stress-induced VOCs in tea plants. Our focus is on the role of stress-induced VOCs in complex ecological environments. Particularly, the roles of VOCs under abiotic stress are highlighted. Finally, we discuss pertinent questions and future research directions for advancing our understanding of plant interactions via VOCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA