Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(9): 7611-7617, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38363118

RESUMEN

The recently uncovered two-dimensional materials serve as versatile building blocks for electronic devices. In this study, we methodically investigate the impact of substrate-induced strain and exchange field effects on the electronic density of states (EDOS) and electronic heat capacity (EHC) of single-layer ß12-borophene. Utilizing the Green's function approach, we compute these functions. The van Hove singularities in EDOS are observed to shift with strain, and depending on the direction and strength of the exchange field, the number of singularities increases. All these responses can be attributed to the renormalization of the velocity of electronic bands. Additionally, the inherent Schottky anomaly (an unusual peak at low temperatures) in the EHC undergoes a notable shift to higher and lower temperatures and variations in the intensity of the EHC due to substrate effects.

2.
Phys Chem Chem Phys ; 22(1): 286-294, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31808767

RESUMEN

ß12-Borophene is a perfect planar nanolattice comprising of massless Dirac fermions and massless/massive triplet fermions considering the inversion symmetry lattice model. In this paper, a detailed study of the electric field and the effects of low concentrations of impurities on the electronic phase and the electrical conductivity of ß12-borophene is presented. As a direct manner to judge the electronic features of pristine and perturbed monolayer ß12-borophene, the five-band tight-binding Hamiltonian model, the T-matrix theory, the linear response theory, and the Green's function approach are investigated. Our investigation reveals that the massless Dirac and triplet fermions become massive when an electric field is applied. Also, we found out that the electric current and eventually the electrical conductivity are not the same along different directions and an enhancement of around 18.53% (15.38%) for the x-direction (in-plane) component is observed at a certain thermal energy. Furthermore, the metal-to-semiconductor electronic phase transition in the presence of different impurity atoms results in a 197.16% (198.23%) enhancement in x- (in-plane-) component of electrical conductivity. The results provide a basis of designing novel electronic devices based on ß12-borophene.

3.
Sci Rep ; 11(1): 3716, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580112

RESUMEN

The strongly anisotropic properties of phosphorene makes it an attractive material for applications in deciding the specific direction for different purposes. Here we have particularly reported the competition between strain and electric field stimuli in evaluating the band gap and electron energy loss spectrum (EELS) of single-layer black phosphorus using the tight-binding method and the Kubo conductivity. We construct possible configurations for this competition and evaluate the interband optical excitations considering the corresponding band gap variations. The band gap increases with the individual electric field, while it increases (decreases) with tensile (compressive) uniaxial in-plane strain. Contrary to the in-plane strains, the uniaxial out-of-plane strain shows a critical strain at which the system suffers from a phase transition. Furthermore, the presence of these stimuli simultaneously results in an extraordinary band gap engineering. Based on the EELS response in the electromagnetic spectrum, the armchair (zigzag) direction is classified into the infrared and visible (ultraviolet) region. We report that the electric field gives rise to the blue shift in the interband optical transitions along the armchair direction, while the compressive/tensile (tensile/compressive) in-plane/out-of-plane strain provides a red (blue) shift. Moreover, we observe an inverse behavior of EELS response to the individual and combined effects of electric field and strains compared to the band gap behavior except at critical out-of-plane strain for which the physical theory of interband excitation is simply violated. Our results provide a new perspective on the applicability of phosphorene in stimulated optical applications.

4.
RSC Adv ; 9(33): 19006-19015, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35516876

RESUMEN

Optical activity is one of the most fascinating fields in current physics. The strong anisotropic feature in monolayer phosphorene leads to the emergence of non-trivial optoelectronic physics. This paper is devoted to a detailed analysis of strain effects on the optical activity of phosphorene ranging from low-optical-field to high-optical-field. To do so, a numerical study of the two-band tight-binding model is accomplished using the Harrison rule and the linear response theory. Although the transparency of phosphorene confirms at all frequencies independent of the strain modulus and direction, on average, from low- to high-optical-field limit, the polarization of the reflected wave at critical strains becomes circular and the ellipse axis tends to a rotation of 180°. It is found that the maximum absorption takes place at high-energy transitions, which quantitatively depends strongly on the strain modulus and direction. Furthermore, a detailed investigation of compressive and tensile strains results in the dominant contribution of the in-plane compressive and out-of-plane tensile strains to the reflected/transmitted light for low- and intermediate-optical-field ranges, whilst both contribute for the high-optical-field limit. However, overall, in-plane compressive and out-of-plane tensile strains come in to play a role in the absorption spectra. Thereby, the quality of the determined reflection, transmission and absorption waves depends on the regarded regime of the optical field, strain modulus, and strain orientation. These findings if sufficient can be performed and/or tuned experimentally, and a vast number of phosphorene-based optoelectronic devices can be achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA