Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Trends Genet ; 38(1): 45-58, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34284881

RESUMEN

Structural variation (SV) is a large difference (typically >100 bp) in the genomic structure of two genomes and includes both copy number variation and variation that does not change copy number of a genomic region, such as an inversion. Improved reference genomes, combined with widespread genome sequencing using short-read sequencing technology, and increasingly using long-read sequencing, have reignited interest in SV. Recent large-scale studies and functional focused analyses have highlighted the role of SV in human evolution. In this review, we highlight human-specific SVs involved in changes in the brain, population-specific SVs that affect response to the environment, including adaptation to diet and infectious diseases, and summarise the contribution of archaic hominin admixture to present-day human SV.


Asunto(s)
Variaciones en el Número de Copia de ADN , Hominidae , Animales , Variaciones en el Número de Copia de ADN/genética , Genoma , Genoma Humano/genética , Variación Estructural del Genoma/genética , Genómica , Hominidae/genética , Humanos , Análisis de Secuencia de ADN
2.
Genes Chromosomes Cancer ; 63(1): e23189, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37421230

RESUMEN

Malignant pleural mesothelioma (MPM), a rare cancer a long latency period (up to 40 years) between asbestos exposure and disease presentation. The mechanisms coupling asbestos to recurrent somatic alterations are poorly defined. Gene fusions arising through genomic instability may create novel drivers during early MPM evolution. We explored the gene fusions that occurred early in the evolutionary history of the tumor. We conducted multiregional whole exome sequencing (WES) of 106 samples from 20 patients undergoing pleurectomy decortication and identified 24 clonal nonrecurrent gene fusions, three of which were novel (FMO9P-OR2W5, GBA3, and SP9). The number of early gene fusion events detected varied from zero to eight per tumor, and presence of gene fusions was associated with clonal losses involving the Hippo pathway genes and homologous recombination DNA repair genes. Fusions involved known tumor suppressors BAP1, MTAP, and LRP1B, and a clonal oncogenic fusion involving CACNA1D-ERC2, PARD3B-NT5DC2, and STAB2-NT5DC2 fusions were also identified as clonal fusions. Gene fusions events occur early during MPM evolution. Individual fusions are rare as no recurrent truncal fusions event were found. This suggests the importance of early disruption of these pathways in generating genomic rearrangements resulting in potentially oncogenic gene fusions.


Asunto(s)
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Mesotelioma Maligno/genética , Vía de Señalización Hippo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mesotelioma/genética , Reparación del ADN/genética , Fusión Génica
3.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36744935

RESUMEN

SUMMARY: DeepPheWAS is an R package for phenome-wide association studies that creates clinically curated composite phenotypes and integrates quantitative phenotypes from primary care data, longitudinal trajectories of quantitative measures, disease progression and drug response phenotypes. Tools are provided for efficient analysis of association with any genetic input, under any genetic model, with optional sex-stratified analysis, and for developing novel phenotypes. AVAILABILITY AND IMPLEMENTATION: The DeepPheWAS R package is freely available under GNU general public licence v3.0 from at https://github.com/Richard-Packer/DeepPheWAS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Fenómica , Programas Informáticos , Fenotipo
4.
Immunogenetics ; 75(3): 201-206, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224278

RESUMEN

Glycophorins are transmembrane proteins of red blood cells (RBCs), heavily glycosylated on their external-facing surface. In humans, there are four glycophorin proteins, glycophorins A, B, C and D. Glycophorins A and B are encoded by two similar genes GYPA and GYPB, and glycophorin C and glycophorin D are encoded by a single gene, GYPC. The exact function of glycophorins remains unclear. However, given their abundance on the surface of RBCs, it is likely that they serve as a substrate for glycosylation, giving the RBC a negatively charged, complex glycan "coat". GYPB and GYPE (a closely related pseudogene) were generated from GYPA by two duplication events involving a 120-kb genomic segment between 10 and 15 million years ago. Non-allelic homologous recombination between these 120-kb repeats generates a variety of duplication alleles and deletion alleles, which have been systematically catalogued from genomic sequence data. One allele, called DUP4, encodes the Dantu NE blood type and is strongly protective against malaria as it alters the surface tension of the RBC membrane. Glycophorins interact with other infectious pathogens, including viruses, as well as the malarial parasite Plasmodium falciparum, but the role of glycophorin variation in mediating the effects of these pathogens remains underexplored.


Asunto(s)
Enfermedades Transmisibles , Glicoforinas , Humanos , Glicoforinas/genética , Glicoforinas/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Proteínas de la Membrana/genética , Variación Genética
5.
FASEB J ; 36(3): e22200, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182405

RESUMEN

Intelectins (intestinal lectins) are highly conserved across chordate evolution and have been implicated in various human diseases, including Crohn's disease (CD). The human genome encodes two intelectin genes, intelectin-1 (ITLN1) and intelectin-2 (ITLN2). Other than its high sequence similarity with ITLN1, little is known about ITLN2. To address this void in knowledge, we report that ITLN2 exhibits discrete, yet notable differences from ITLN1 in primary structure, including a unique amino terminus, as well as changes in amino acid residues associated with the glycan-binding activity of ITLN1. We identified that ITLN2 is a highly abundant Paneth cell-specific product, which localizes to secretory granules, and is expressed as a multimeric protein in the small intestine. In surgical specimens of ileal CD, ITLN2 mRNA levels were reduced approximately five-fold compared to control specimens. The ileal expression of ITLN2 was unaffected by previously reported disease-associated variants in ITLN2 and CD-associated variants in neighboring ITLN1 as well as NOD2 and ATG16L1. ITLN2 mRNA expression was undetectable in control colon tissue; however, in both ulcerative colitis (UC) and colonic CD, metaplastic Paneth cells were found to express ITLN2. Together, the data reported establish the groundwork for understanding ITLN2 function(s) in the intestine, including its possible role in CD.


Asunto(s)
Enfermedad de Crohn/metabolismo , Lectinas/metabolismo , Células de Paneth/metabolismo , Vesículas Secretoras/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Humanos , Lectinas/genética , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Ann Hum Genet ; 85(1): 7-17, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32895931

RESUMEN

Structural variation in the human genome can affect risk of disease. An example is a complex structural variant of the human glycophorin gene cluster, called DUP4, which is associated with a clinically significant level of protection against severe malaria. The human glycophorin gene cluster harbours at least 23 distinct structural variants, and accurate genotyping of this complex structural variation remains a challenge. Here, we use a polymerase chain reaction-based strategy to genotype structural variation at the human glycophorin gene cluster, including the alleles responsible for the U- blood group. We validate our approach, based on a triplex paralogue ratio test, on publically available samples from the 1000 Genomes project. We then genotype 574 individuals from a longitudinal birth cohort (Tori-Bossito cohort) using small amounts of DNA at low cost. Our approach readily identifies known deletions and duplications, and can potentially identify novel variants for further analysis. It will allow exploration of genetic variation at the glycophorin locus, and investigation of its relationship with malaria, in large sample sets at minimal cost, using standard molecular biology equipment.


Asunto(s)
Técnicas de Genotipaje , Glicoforinas/genética , Malaria/genética , Benin , Genoma Humano , Genotipo , Humanos , Familia de Multigenes , Reacción en Cadena de la Polimerasa
7.
Am J Hum Genet ; 103(5): 769-776, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388403

RESUMEN

Glycophorin A and glycophorin B are red blood cell surface proteins and are both receptors for the parasite Plasmodium falciparum, which is the principal cause of malaria in sub-Saharan Africa. DUP4 is a complex structural genomic variant that carries extra copies of a glycophorin A-glycophorin B fusion gene and has a dramatic effect on malaria risk by reducing the risk of severe malaria by up to 40%. Using fiber-FISH and Illumina sequencing, we validate the structural arrangement of the glycophorin locus in the DUP4 variant and reveal somatic variation in copy number of the glycophorin B-glycophorin A fusion gene. By developing a simple, specific, PCR-based assay for DUP4, we show that the DUP4 variant reaches a frequency of 13% in the population of a malaria-endemic village in south-eastern Tanzania. We genotype a substantial proportion of that village and demonstrate an association of DUP4 genotype with hemoglobin levels, a phenotype related to malaria, using a family-based association test. Taken together, we show that DUP4 is a complex structural variant that may be susceptible to somatic variation and show that DUP4 is associated with a malarial-related phenotype in a longitudinally followed population.


Asunto(s)
Variación Estructural del Genoma/genética , Glicoforinas/genética , Hemoglobinas/genética , Malaria/genética , Línea Celular , Niño , Preescolar , Eritrocitos/metabolismo , Femenino , Genotipo , Humanos , Estudios Longitudinales , Masculino , Mosaicismo , Fenotipo , Plasmodium falciparum/genética , Tanzanía
8.
BMC Genomics ; 21(1): 446, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600246

RESUMEN

BACKGROUND: Approximately 5% of the human genome shows common structural variation, which is enriched for genes involved in the immune response and cell-cell interactions. A well-established region of extensive structural variation is the glycophorin gene cluster, comprising three tandemly-repeated regions about 120 kb in length and carrying the highly homologous genes GYPA, GYPB and GYPE. Glycophorin A (encoded by GYPA) and glycophorin B (encoded by GYPB) are glycoproteins present at high levels on the surface of erythrocytes, and they have been suggested to act as decoy receptors for viral pathogens. They are receptors for the invasion of the protist parasite Plasmodium falciparum, a causative agent of malaria. A particular complex structural variant, called DUP4, creates a GYPB-GYPA fusion gene known to confer resistance to malaria. Many other structural variants exist across the glycophorin gene cluster, and they remain poorly characterised. RESULTS: Here, we analyse sequences from 3234 diploid genomes from across the world for structural variation at the glycophorin locus, confirming 15 variants in the 1000 Genomes project cohort, discovering 9 new variants, and characterising a selection of these variants using fibre-FISH and breakpoint mapping at the sequence level. We identify variants predicted to create novel fusion genes and a common inversion duplication variant at appreciable frequencies in West Africans. We show that almost all variants can be explained by non-allelic homologous recombination and by comparing the structural variant breakpoints with recombination hotspot maps, confirm the importance of a particular meiotic recombination hotspot on structural variant formation in this region. CONCLUSIONS: We identify and validate large structural variants in the human glycophorin A-B-E gene cluster which may be associated with different clinical aspects of malaria.


Asunto(s)
Variación Estructural del Genoma , Glicoforinas/genética , Malaria Falciparum/genética , Puntos de Rotura del Cromosoma , Mapeo Cromosómico , Bases de Datos Genéticas , Resistencia a la Enfermedad , Humanos , Hibridación Fluorescente in Situ , Alineación de Secuencia , Secuenciación Completa del Genoma
9.
Immunol Rev ; 268(1): 6-24, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26497510

RESUMEN

Fcγ receptors (FcγRs) are key immune receptors responsible for the effective control of both humoral and innate immunity and are central to maintaining the balance between generating appropriate responses to infection and preventing autoimmunity. When this balance is lost, pathology results in increased susceptibility to cancer, autoimmunity, and infection. In contrast, optimal FcγR engagement facilitates effective disease resolution and response to monoclonal antibody immunotherapy. The underlying genetics of the FcγR gene family are a central component of this careful balance. Complex in humans and generated through ancestral duplication events, here we review the evolution of the gene family in mammals, the potential importance of copy number, and functionally relevant single nucleotide polymorphisms, as well as discussing current approaches and limitations when exploring genetic variation in this region.


Asunto(s)
Susceptibilidad a Enfermedades , Variación Genética , Receptores de IgG/genética , Receptores de IgG/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Evolución Molecular , Dosificación de Gen , Sitios Genéticos , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Sistema Inmunológico , Inmunoterapia , Ratones , Familia de Multigenes
10.
Hum Genet ; 137(4): 305-314, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29675612

RESUMEN

Single nucleotide variants (SNVs) within and surrounding the complement receptor 1 (CR1) gene show some of the strongest genome-wide association signals with late-onset Alzheimer's disease. Some studies have suggested that this association signal is due to a duplication allele (CR1-B) of a low copy repeat (LCR) within the CR1 gene, which increases the number of complement C3b/C4b-binding sites in the mature receptor. In this study, we develop a triplex paralogue ratio test assay for CR1 LCR copy number allowing large numbers of samples to be typed with a limited amount of DNA. We also develop a CR1-B allele-specific PCR based on the junction generated by an historical non-allelic homologous recombination event between CR1 LCRs. We use these methods to genotype CR1 and measure CR1-B allele frequency in both late-onset and early-onset cases and unaffected controls from the United Kingdom. Our data support an association of late-onset Alzheimer's disease with the CR1-B allele, and confirm that this allele occurs most frequently on the risk haplotype defined by SNV alleles. Furthermore, regression models incorporating CR1-B genotype provide a better fit to our data compared to incorporating the SNV-defined risk haplotype, supporting the CR1-B allele as the variant underlying the increased risk of late-onset Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad , Receptores de Complemento 3b/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Enfermedad de Alzheimer/fisiopatología , Sitios de Unión , Complemento C3b/genética , Proteína de Unión al Complemento C4b/genética , Femenino , Duplicación de Gen/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Reino Unido
11.
Proc Natl Acad Sci U S A ; 112(16): 5105-10, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848046

RESUMEN

The dietary change resulting from the domestication of plant and animal species and development of agriculture at different locations across the world was one of the most significant changes in human evolution. An increase in dietary carbohydrates caused an increase in dental caries following the development of agriculture, mediated by the cariogenic oral bacterium Streptococcus mutans. Salivary agglutinin [SAG, encoded by the deleted in malignant brain tumors 1 (DMBT1) gene] is an innate immune receptor glycoprotein that binds a variety of bacteria and viruses, and mediates attachment of S. mutans to hydroxyapatite on the surface of the tooth. In this study we show that multiallelic copy number variation (CNV) within DMBT1 is extensive across all populations and is predicted to result in between 7-20 scavenger-receptor cysteine-rich (SRCR) domains within each SAG molecule. Direct observation of de novo mutation in multigeneration families suggests these CNVs have a very high mutation rate for a protein-coding locus, with a mutation rate of up to 5% per gamete. Given that the SRCR domains bind S. mutans and hydroxyapatite in the tooth, we investigated the association of sequence diversity at the SAG-binding gene of S. mutans, and DMBT1 CNV. Furthermore, we show that DMBT1 CNV is also associated with a history of agriculture across global populations, suggesting that dietary change as a result of agriculture has shaped the pattern of CNV at DMBT1, and that the DMBT1-S. mutans interaction is a promising model of host-pathogen-culture coevolution in humans.


Asunto(s)
Evolución Biológica , Genética de Población , Tasa de Mutación , Mutación/genética , Receptores de Superficie Celular/genética , Agricultura , Secuencia de Aminoácidos , Proteínas de Unión al Calcio , Variaciones en el Número de Copia de ADN/genética , Proteínas de Unión al ADN , Humanos , Ligandos , Datos de Secuencia Molecular , Receptores de Superficie Celular/química , Streptococcus mutans/metabolismo , Proteínas Supresoras de Tumor
12.
Hum Mutat ; 38(4): 390-399, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27995740

RESUMEN

Fcγ receptors are a family of cell-surface receptors that are expressed by a host of different innate and adaptive immune cells, and mediate inflammatory responses by binding the Fc portion of immunoglobulin G. In humans, five low-affinity receptors are encoded by the genes FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B, which are located in an 82.5-kb segmental tandem duplication on chromosome 1q23.3, which shows extensive copy-number variation (CNV). Deletions of FCGR3B have been suggested to increase the risk of inflammatory diseases such as systemic lupus erythematosus and rheumatoid arthritis (RA). In this study, we identify the deletion breakpoints of FCGR3B deletion alleles in the UK population and endogamous native American population, and show that some but not all alleles are likely to be identical-by-descent. We also localize a duplication breakpoint, confirming that the mechanism of CNV generation is nonallelic homologous recombination, and identify several alleles with gene conversion events using fosmid sequencing data. We use information on the structure of the deletion alleles to distinguish FCGR3B deletions from FCGR3A deletions in whole-genome array comparative genomic hybridization (aCGH) data. Reanalysis of published aCGH data using this approach supports association of FCGR3B deletion with increased risk of RA in a large cohort of 1,982 cases and 3,271 controls (odds ratio 1.61, P = 2.9×10-3 ).


Asunto(s)
Artritis Reumatoide/genética , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad/genética , Receptores de IgG/genética , Eliminación de Secuencia , Alelos , Artritis Reumatoide/metabolismo , Estudios de Cohortes , Hibridación Genómica Comparativa/métodos , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Haplotipos , Recombinación Homóloga , Humanos , Polimorfismo de Nucleótido Simple , Receptores de IgG/metabolismo , Factores de Riesgo
13.
Ann Hum Genet ; 81(1): 27-34, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28084001

RESUMEN

Common single-nucleotide variation in the host accounts for 25% of the variability in the plasma levels of HIV during the clinical latency stage (viral load set point). However, the role of rare variants and copy number variants remains relatively unexplored. Previous work has suggested copy number variation of a cluster of ß-defensin genes affects HIV load in treatment-naïve sub-Saharan Africans and rate of response to antiretroviral treatment. Here we analyse a total of 1827 individuals from two cohorts of HIV-infected individuals from Europe and sub-Saharan Africa to investigate the role of ß-defensin copy number variation on HIV load at set point. We find no evidence for association of copy number with viral load. We also compare distribution of ß-defensin copy number between European cases and controls and find no differences, arguing against a role of ß-defensin copy number in HIV acquisition. Taken together, our data argue against an effect of copy number variation of the ß-defensin region in the spontaneous control of HIV infection.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/genética , VIH-1/fisiología , beta-Defensinas/genética , Síndrome de Inmunodeficiencia Adquirida/virología , Adulto , Variaciones en el Número de Copia de ADN , Progresión de la Enfermedad , Femenino , Dosificación de Gen , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Carga Viral
14.
PLoS Genet ; 10(5): e1004314, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24786987

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a leading cause of global morbidity and mortality and, whilst smoking remains the single most important risk factor, COPD risk is heritable. Of 26 independent genomic regions showing association with lung function in genome-wide association studies, eleven have been reported to show association with airflow obstruction. Although the main risk factor for COPD is smoking, some individuals are observed to have a high forced expired volume in 1 second (FEV1) despite many years of heavy smoking. We hypothesised that these "resistant smokers" may harbour variants which protect against lung function decline caused by smoking and provide insight into the genetic determinants of lung health. We undertook whole exome re-sequencing of 100 heavy smokers who had healthy lung function given their age, sex, height and smoking history and applied three complementary approaches to explore the genetic architecture of smoking resistance. Firstly, we identified novel functional variants in the "resistant smokers" and looked for enrichment of these novel variants within biological pathways. Secondly, we undertook association testing of all exonic variants individually with two independent control sets. Thirdly, we undertook gene-based association testing of all exonic variants. Our strongest signal of association with smoking resistance for a non-synonymous SNP was for rs10859974 (P = 2.34 × 10(-4)) in CCDC38, a gene which has previously been reported to show association with FEV1/FVC, and we demonstrate moderate expression of CCDC38 in bronchial epithelial cells. We identified an enrichment of novel putatively functional variants in genes related to cilia structure and function in resistant smokers. Ciliary function abnormalities are known to be associated with both smoking and reduced mucociliary clearance in patients with COPD. We suggest that genetic influences on the development or function of cilia in the bronchial epithelium may affect growth of cilia or the extent of damage caused by tobacco smoke.


Asunto(s)
Cilios/fisiología , Exoma , Proteínas/fisiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Fumar/fisiopatología , Adolescente , Adulto , Anciano , Estudios de Cohortes , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Proteínas/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Sitios de Carácter Cuantitativo , Adulto Joven
15.
Hum Mol Genet ; 23(12): 3129-37, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24452335

RESUMEN

Huntington's disease (HD) is a devastating neurodegenerative disorder which is inherited in an autosomal dominant manner. HD is caused by a trinucleotide CAG repeat expansion that encodes a polyglutamine stretch in the huntingtin (HTT) protein. Mutant HTT expression leads to a myriad of cellular dysfunctions culminating in neuronal loss and consequent motor, cognitive and psychiatric disturbances in HD patients. The length of the CAG repeat is inversely correlated with age of onset (AO) in HD patients, while environmental and genetic factors can further modulate this parameter. Here, we explored whether the recently described copy-number variation (CNV) of the gene SLC2A3-which encodes the neuronal glucose transporter GLUT3-could modulate AO in HD. Strikingly, we found that increased dosage of SLC2A3 delayed AO in an HD cohort of 987 individuals, and that this correlated with increased levels of GLUT3 in HD patient cells. To our knowledge this is the first time that CNV of a candidate gene has been found to modulate HD pathogenesis. Furthermore, we found that increasing dosage of Glut1-the Drosophila melanogaster homologue of this glucose transporter-ameliorated HD-relevant phenotypes in fruit flies, including neurodegeneration and life expectancy. As alterations in glucose metabolism have been implicated in HD pathogenesis, this study may have important therapeutic relevance for HD.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Enfermedad de Huntington/epidemiología , Enfermedad de Huntington/genética , Edad de Inicio , Animales , Línea Celular , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Femenino , Dosificación de Gen , Humanos , Enfermedad de Huntington/patología , Masculino , Filogenia , Regulación hacia Arriba
16.
BMC Med Genet ; 17(1): 44, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27416785

RESUMEN

BACKGROUND: DMBT1 is a gene that shows extensive copy number variation (CNV) that alters the number of bacteria-binding domains in the protein and has been shown to activate the complement pathway. It lies next to the ARMS2/HTRA1 genes in a region of chromosome 10q26, where single nucleotide variants have been strongly associated with age-related macular degeneration (AMD), the commonest cause of blindness in Western populations. Complement activation is thought to be a key factor in the pathogenesis of this condition. We sought to investigate whether DMBT1 CNV plays any role in the susceptibility to AMD. METHODS: We analysed long-range linkage disequilibrium of DMBT1 CNV1 and CNV2 with flanking single nucleotide polymorphisms (SNPs) using our previously published CNV and HapMap Phase 3 SNP data in the CEPH Europeans from Utah (CEU). We then typed a large cohort of 860 AMD patients and 419 examined age-matched controls for copy number at DMBT1 CNV1 and CNV2 and combined these data with copy numbers from a further 480 unexamined controls. RESULTS: We found weak linkage disequilibrium between DMBT1 CNV1 and CNV2 with the SNPs rs1474526 and rs714816 in the HTRA1/ARMS2 region. By directly analysing copy number variation, we found no evidence of association of CNV1 or CNV2 with AMD. CONCLUSIONS: We have shown that copy number variation at DMBT1 does not affect risk of developing age-related macular degeneration and can therefore be ruled out from future studies investigating the association of structural variation at 10q26 with AMD.


Asunto(s)
Degeneración Macular/genética , Receptores de Superficie Celular/genética , Alelos , Proteínas de Unión al Calcio , Estudios de Casos y Controles , Cromosomas Humanos Par 10 , Variaciones en el Número de Copia de ADN , Proteínas de Unión al ADN , Frecuencia de los Genes , Genotipo , Serina Peptidasa A1 que Requiere Temperaturas Altas , Humanos , Desequilibrio de Ligamiento , Degeneración Macular/patología , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Proteínas/genética , Serina Endopeptidasas/genética , Proteínas Supresoras de Tumor
17.
BJU Int ; 117(4): 686-96, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26471473

RESUMEN

OBJECTIVES: To evaluate the immunocytochemical detection of ERG protein in exfoliated cells as a means of identifying patients with prostate cancer (PCa) before prostate biopsy. MATERIALS AND METHODS: Urine samples (30 mL) were collected after digital rectal examination (DRE) from 159 patients with an elevated age-specific prostate-specific antigen (PSA) and/or an abnormal DRE who underwent prostate biopsy. In all cases, exfoliated urinary cells from half of the urine sample underwent immunocytochemical assessment for ERG protein expression. Exfoliated cells in the remaining half underwent assessment of TMPRSS2:ERG status using either nested reverse-transcriptase (RT)-PCR (151 cases) or fluorescence in situ hybridization (FISH; eight cases). Corresponding tissue samples were evaluated using FISH to determine chromosomal gene fusion tissue status and immunohistochemistry (IHC) to determine ERG protein expression. Results were correlated with clinicopathological variables. RESULTS: The sensitivity and specificity of urinary ERG immunocytochemistry (ICC) for PCa were 22.7 and 100%, respectively. ERG ICC results correlated with advanced tumour grade, stage and higher serum PSA. In comparison, urine TMPRSS2:ERG transcript analysis had 27% sensitivity and 98% specificity for PCa detection. On tissue IHC, ERG staining was highly specific for PCa. In all, 52% of cancers harboured foci of ERG staining; however, only 46% of cancers that were found to have ERG overexpression were positive on urine ICC. The ERG ICC results showed strong concordance with urinary RT-PCR and FISH, and tissue IHC and FISH. CONCLUSION: This is the first study to show that cytological gene fusion detection using ICC is feasible and identifies patients with adverse disease markers. ERG ICC was highly specific, but this technique was less sensitive than RT-PCR.


Asunto(s)
Adenocarcinoma/diagnóstico , Próstata/patología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Transactivadores/metabolismo , Biopsia con Aguja Gruesa , Detección Precoz del Cáncer , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Masculino , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/orina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina Endopeptidasas/metabolismo , Regulador Transcripcional ERG
18.
BMC Genomics ; 16: 891, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26526070

RESUMEN

BACKGROUND: Copy number variation (CNV) is a major component of genomic variation, yet methods to accurately type genomic CNV lag behind methods that type single nucleotide variation. High-throughput sequencing can contribute to these methods by using sequence read depth, which takes the number of reads that map to a given part of the reference genome as a proxy for copy number of that region, and compares across samples. Furthermore, high-throughput sequencing also provides information on the sequence differences between copies within and between individuals. METHODS: In this study we use high-coverage phase 3 exome sequences of the 1000 Genomes project to infer diploid copy number of the beta-defensin genomic region, a well-studied CNV that carries several beta-defensin genes involved in the antimicrobial response, signalling, and fertility. We also use these data to call sequence variants, a particular challenge given the multicopy nature of the region. RESULTS: We confidently call copy number and sequence variation of the beta-defensin genes on 1285 samples from 26 global populations, validate copy number using Nanostring nCounter and triplex paralogue ratio test data. We use the copy number calls to verify the genomic extent of the CNV and validate sequence calls using analysis of cloned PCR products. We identify novel variation, mostly individually rare, predicted to alter amino-acid sequence in the beta-defensin genes. Such novel variants may alter antimicrobial properties or have off-target receptor interactions, and may contribute to individuality in immunological response and fertility. CONCLUSIONS: Given that 81% of identified sequence variants were not previously in dbSNP, we show that sequence variation in multiallelic CNVs represent an unappreciated source of genomic diversity.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos
19.
Am J Hum Genet ; 90(6): 973-85, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22608500

RESUMEN

Both sequence variation and copy-number variation (CNV) of the genes encoding receptors for immunoglobulin G (Fcγ receptors) have been genetically and functionally associated with a number of autoimmune diseases. However, the molecular nature and evolutionary context of this variation is unknown. Here, we describe the structure of the CNV, estimate its mutation rate and diversity, and place it in the context of the known functional alloantigen variation of these genes. Deletion of Fcγ receptor IIIB, associated with systemic lupus erythematosus, is a result of independent nonallelic homologous recombination events with a frequency of approximately 0.1%. We also show that pathogen diversity, in particular helminth diversity, has played a critical role in shaping the functional variation at these genes both between mammalian species and between human populations. Positively selected amino acids are involved in the interaction with IgG and include some amino acids that are known polymorphic alloantigens in humans. This supports a genetic contribution to the hygiene hypothesis, which states that past evolution in the context of helminth diversity has left humans with an array of susceptibility alleles for autoimmune disease in the context of a helminth-free environment. This approach shows the link between pathogens and autoimmune disease at the genetic level and provides a strategy for interrogating the genetic variation underlying autoimmune-disease risk and infectious-disease susceptibility.


Asunto(s)
Enfermedades Autoinmunes/genética , Evolución Molecular , Helmintiasis/parasitología , Mutación , Receptores de IgG/genética , Alelos , Eliminación de Gen , Dosificación de Gen , Predisposición Genética a la Enfermedad/genética , Variación Genética , Haplotipos , Humanos , Inmunoglobulina G/metabolismo , Modelos Genéticos , Tasa de Mutación , Filogenia , Recombinación Genética
20.
Hum Genet ; 133(10): 1217-33, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25110110

RESUMEN

Variability in the susceptibility to infectious disease and its clinical manifestation can be determined by variation in the environment and by genetic variation in the pathogen and the host. Despite several successes based on candidate gene studies, defining the host variation affecting infectious disease has not been as successful as for other multifactorial diseases. Both single nucleotide variation and copy number variation (CNV) of the host contribute to the host's susceptibility to infectious disease. In this review we focus on CNV, particularly on complex multiallelic CNV that is often not well characterised either directly by hybridisation methods or indirectly by analysis of genotypes and flanking single nucleotide variants. We summarise the well-known examples, such as α-globin deletion and susceptibility to severe malaria, as well as more recent controversies, such as the extensive CNV of the chemokine gene CCL3L1 and HIV infection. We discuss the potential biological mechanisms that could underly any genetic association and reflect on the extensive complexity and functional variation generated by a combination of CNV and sequence variation, as illustrated by the Fc gamma receptor genes FCGR3A, FCGR3B and FCGR2C. We also highlight some understudied areas that might prove fruitful areas for further research.


Asunto(s)
Enfermedades Transmisibles/genética , Variaciones en el Número de Copia de ADN , Dosificación de Gen , Animales , Quimiocinas CC/genética , Infecciones por VIH/genética , VIH-1 , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Malaria/genética , Malaria/parasitología , Receptores de IgG/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA