Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34535552

RESUMEN

The spreading of a liquid droplet on flat surfaces is a well-understood phenomenon, but little is known about how liquids spread on a rough surface. When the surface roughness is of the nanoscopic length scale, the capillary forces dominate and the liquid droplet spreads by wetting the nanoscale textures that act as capillaries. Here, using a combination of advanced nanofabrication and liquid-phase transmission electron microscopy, we image the wetting of a surface patterned with a dense array of nanopillars of varying heights. Our real-time, high-speed observations reveal that water wets the surface in two stages: 1) an ultrathin precursor water film forms on the surface, and then 2) the capillary action by nanopillars pulls the water, increasing the overall thickness of water film. These direct nanoscale observations capture the previously elusive precursor film, which is a critical intermediate step in wetting of rough surfaces.

2.
Nano Lett ; 17(5): 2953-2958, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28418255

RESUMEN

Wet chemical etching is a key process in fabricating silicon (Si) nanostructures. Currently, wet etching of Si is proposed to occur through the reaction of surface Si atoms with etchant molecules, forming etch intermediates that dissolve directly into the bulk etchant solution. Here, using in situ transmission electron microscopy (TEM), we follow the nanoscale wet etch dynamics of amorphous Si (a-Si) nanopillars in real-time and show that intermediates generated during alkaline wet etching first aggregate as nanoclusters on the Si surface and then detach from the surface before dissolving in the etchant solution. Molecular dynamics simulations reveal that the molecules of etch intermediates remain weakly bound to the hydroxylated Si surface during the etching and aggregate into nanoclusters via surface diffusion instead of directly diffusing into the etchant solution. We confirmed this model experimentally by suppressing the formation of nanoclusters of etch intermediates on the Si surfaces by shielding the hydroxylated Si sites with large ions. These results suggest that the interaction of etch intermediates with etching surfaces controls the solubility of reaction intermediates and is an important parameter in fabricating densely packed clean 3D nanostructures for future generation microelectronics.

3.
Langmuir ; 33(15): 3601-3609, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28335608

RESUMEN

In situ characterization of the underwater stability of superhydrophobic micro- and nanostructured surfaces is important for the development of self-cleaning and antifouling materials. In this work, we demonstrate a novel attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy-based method for large-area wetting characterization of silicon nanopillars. When air is present in between the structures, as is characteristic of the Cassie-Baxter state, the relative intensities of the water bands in the absorption spectrum change because of the wavelength-dependent attenuation of the evanescent wave. This phenomenon enables unambiguous identification of the wetting state and assessment of liquid impalement. Using mixtures of isopropanol and water with different concentrations, the breakdown of superhydrophobic states and the wetting hysteresis effects are systematically studied on uniform arrays of silicon nanopillars. A transition from the Cassie-Baxter to Wenzel state is observed when the isopropanol concentration exceeds 2.8 mol %, corresponding to a critical surface tension of 39 mN/m. Spontaneous dewetting does not occur upon decreasing the isopropanol concentration, and pure water can be obtained in a stable Wenzel state on the originally superhydrophobic substrates. The developed ATR-FTIR method can be promising for real-time monitoring of the wetting kinetics on nanostructured surfaces.

4.
J Acoust Soc Am ; 135(4): 1731-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25234973

RESUMEN

The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.

5.
J Acoust Soc Am ; 132(1): 37-47, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22779453

RESUMEN

The transport of bubbles to a neighboring surface is very important in surface chemistry, bioengineering, and ultrasonic cleaning, etc. This paper proposes a multi-bubble transport method by using an acoustic standing wave field and establishes a model that explains the multi-bubble translation by expressing the balance between Bjerknes forces and hydrodynamic forces on a bubble in a liquid medium. Results indicated that the influence of primary Bjerknes force, secondary Bjerknes force, and buoyancy force on the bubble translation depends on the position of the target bubble in the acoustic field. Moreover, it was found that increasing the size of a bubble or pressure amplitude can accelerate the bubble motion and enhance the bubble-bubble interaction. The secondary Bjerknes force between two bubbles can switch from an attractive one when they oscillate in phase to a repulsive one when the bubble oscillations are out of phase. These findings provide an insight into the multi-bubble translation near a surface and can be applied to future bubble motion control studies, especially in drug delivery, sonoporation, and ultrasonic cleaning.

6.
ACS Appl Mater Interfaces ; 14(4): 5537-5544, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35040618

RESUMEN

Robust processes to fabricate densely packed high-aspect-ratio (HAR) vertical semiconductor nanostructures are important for applications in microelectronics, energy storage and conversion. One of the main challenges in manufacturing these nanostructures is pattern collapse, which is the damage induced by capillary forces from numerous solution-based processes used during their fabrication. Here, using an array of vertical silicon (Si) nanopillars as test structures, we demonstrate that pattern collapse can be greatly reduced by a solution-phase deposition method to coat the nanopillars with self-assembled monolayers (SAMs). As the main cause for pattern collapse is strong adhesion between the nanopillars, we systematically evaluated SAMs with different surface energy components and identified H-bonding between the surfaces to have the largest contribution to the adhesion. The advantage of the solution-phase deposition method is that it can be implemented before any drying step, which causes patterns to collapse. Moreover, after drying, these SAMs can be easily removed using a gentle air-plasma treatment right before the next fabrication step, leaving a clean nanopillar surface behind. Therefore, our approach provides a facile and effective method to prevent the drying-induced pattern collapse in micro- and nanofabrication processes.

7.
J Phys Chem Lett ; 11(7): 2751-2758, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32187494

RESUMEN

Dense arrays of high-aspect-ratio (HAR) vertical nanostructures are essential elements of microelectronic components, photovoltaics, nanoelectromechanical, and energy storage devices. One of the critical challenges in manufacturing the HAR nanostructures is to prevent their capillary-induced aggregation during solution-based nanofabrication processes. Despite the importance of controlling capillary effects, the detailed mechanisms of how a solution interacts with nanostructures are not well understood. Using in situ liquid cell transmission electron microscopy (TEM), we track the dynamics of nanoscale drying process of HAR silicon (Si) nanopillars in real-time and identify a new mechanism responsible for pattern collapse and nanostructure aggregation. During drying, deflection and aggregation of nanopillars are driven by thin-liquid-film instability, which results in much stronger capillary interactions between the nanopillars than the commonly proposed lateral meniscus interaction forces. The importance of thin-film instability in dewetting has been overlooked in prevalent theories on elastocapillary aggregation. The new dynamic mechanism revealed by in situ visualization is essential for the development of robust nanofabrication processes.

8.
ACS Appl Mater Interfaces ; 11(40): 36839-36846, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525293

RESUMEN

Silicon germanium (SixGe1-x or SiGe) is an important semiconductor material for the fabrication of nanowire-based gate-all-around transistors in the next-generation logic and memory devices. During the fabrication process, SiGe can be used either as a sacrificial layer to form suspended horizontal Si nanowires or, because of its higher carrier mobility, as a possible channel material that replaces Si in both horizontal and vertical nanowires. In both cases, there is a pressing need to understand and develop nanoscale etching processes that enable controlled and selective removal of SiGe with respect to Si. Here, we developed and tested solution-based selective etching processes for SiGe in composite (SiNx/Si0.75Ge0.25/Si) vertical nanowires. The etching solutions were formed by mixing acetic acid (CH3COOH), hydrogen peroxide (H2O2), and hydrofluoric acid (HF). Here, CH3COOH and H2O2 react to form highly oxidizing peracetic acid (PAA or CH3 CO3H). The hydrofluoric acid serves both as a catalyst for PAA formation and as an etchant for oxidized SiGe. Our study shows that an increase in any of the two oxidizer (H2O2 and PAA) concentrations increases the etch rate, and the fastest etch rate of SiGe is associated with the highest PAA concentration. Moreover, using in situ liquid-phase TEM imaging, we tested the stability of nanowires during wet etching and identified the SiGe/Si interface to be the weakest plane; we found that once the diameter of the 160-nm-tall Si0.75Ge0.25 nanowire reaches ∼15 nm during the etching, the nanowire breaks at or very close to this interface. Our study provides important insight into the details of the nanoscale wet etching of SiGe and some of the associated failure modes that are becoming extremely relevant for the fabrication processes as the size of the transistors shrink with every new device generation.

9.
Nanoscale Res Lett ; 14(1): 285, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31428955

RESUMEN

Wet etching offers an advantage as a soft, damage-less method to remove sacrificial material with close to nanometer precision which has become critical for the fabrication of nanoscale structures. In order to develop such wet etching solutions, screening of etchant properties like selectivity and (an)isotropy has become vital. Since these etchants typically have low etch rates, sensitive test structures are required to evaluate their etching behavior. Therefore, scaled-down single-crystalline Si (c-Si) and SiGe (c-SiGe) wagon-wheels were fabricated. First, the sensitivity of the c-Si wagon-wheels to detect anisotropic behavior of crystalline silicon in the alkaline etchants TMAH and NH4OH was demonstrated. Distinctive wagon-wheel patterns, characteristic for each material/etchant pair, were observed by top-down scanning electron microscopy (SEM) after anisotropic wet etching. Similar trends in crystallographic plane-dependent etch rates were obtained for both Si(100) and Si(110) substrates. Secondly, the etching of both c-Si and c-Si75Ge25 wagon-wheels in a typical selective etchant, peracetic acid (PAA), was evaluated. c-Si75Ge25 etching in PAA resulted in isotropic etching. Selectivity values were calculated based on two methods: the first by measurement of the sidewall loss of the spokes of the wagon-wheel, the second, indirect method, through measurement of the spoke retraction lengths. Both methods give comparable values, but the latter method can only be used after a certain critical etching time, after which the spoke tips have evolved toward a sharp tip.

10.
Sci Rep ; 8(1): 11637, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072798

RESUMEN

Superhydrophobic surfaces are highly promising for self-cleaning, anti-fouling and anti-corrosion applications. However, accurate assessment of the lifetime and sustainability of super-hydrophobic materials is hindered by the lack of large area characterization of superhydrophobic breakdown. In this work, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) is explored for a dynamic study of wetting transitions on immersed superhydrophobic arrays of silicon nanopillars. Spontaneous breakdown of the superhydrophobic state is triggered by in-situ modulation of the liquid surface tension. The high surface sensitivity of ATR-FTIR allows for accurate detection of local liquid infiltration. Experimentally determined wetting transition criteria show significant deviations from predictions by classical wetting models. Breakdown kinetics is found to slow down dramatically when the liquid surface tension approaches the transition criterion, which clearly underlines the importance of more accurate wetting analysis on large-area surfaces. Precise actuation of the superhydrophobic breakdown process is demonstrated for the first time through careful modulation of the liquid surface tension around the transition criterion. The developed ATR-FTIR method can be a promising technique to study wetting transitions and associated dynamics on various types of superhydrophobic surfaces.

11.
Ultrason Sonochem ; 34: 663-676, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27773293

RESUMEN

The detailed link of liquid phase sonochemical reactions and bubble dynamics is still not sufficiently known. To further clarify this issue, we image sonoluminescence and bubble oscillations, translations, and shapes in an acoustic cavitation setup at 23kHz in sulfuric acid with dissolved sodium sulfate and xenon gas saturation. The colour of sonoluminescence varies in a way that emissions from excited non-volatile sodium atoms are prominently observed far from the acoustic horn emitter ("red region"), while such emissions are nearly absent close to the horn tip ("blue region"). High-speed images reveal the dynamics of distinct bubble populations that can partly be linked to the different emission regions. In particular, we see smaller strongly collapsing spherical bubbles within the blue region, while larger bubbles with a liquid jet during collapse dominate the red region. The jetting is induced by the fast bubble translation, which is a consequence of acoustic (Bjerknes) forces in the ultrasonic field. Numerical simulations with a spherical single bubble model reproduce quantitatively the volume oscillations and fast translation of the sodium emitting bubbles. Additionally, their intermittent stopping is explained by multistability in a hysteretic parameter range. The findings confirm the assumption that bubble deformations are responsible for pronounced sodium sonoluminescence. Notably the observed translation induced jetting appears to serve as efficient mixing mechanism of liquid into the heated gas phase of collapsing bubbles, thus potentially promoting liquid phase sonochemistry in general.

12.
Chem Sci ; 6(11): 6564-6571, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30090273

RESUMEN

Benefiting from the prospect of extreme light localization, plasmonic metallic nanostructures are bringing advantages in many applications. However, for use in liquids, the hydrophobic nature of the metallic surface inhibits full wetting, which is related to contact line pinning in the nanostructures. In this work, we use a two-component droplet to overcome this problem. Due to a strong internal flow generated from the solutal Marangoni effect, these droplets can easily prime metallic nanostructures including sub-10 nm nanopores. We subsequently evaluate the local wetting performance of the plasmonic structures using surface enhanced Raman spectroscopy (SERS). Compared with other commonly used surface cleaning based wetting methods such as the oxygen plasma treatment, our two-component drop method is an efficient method in resolving the pinning of contact lines and is also non-destructive to samples. Thus the method described here primes plasmonic devices with guaranteed performances in liquid applications.

13.
ACS Nano ; 8(1): 885-93, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24380402

RESUMEN

Spectacular progress in developing advanced Si circuits with reduced size, along the track of Moore's law, has been relying on necessary developments in wet cleaning of nanopatterned Si wafers to provide contaminant free surfaces. The most efficient cleaning is achieved when complete wetting can be realized. In this work, ordered arrays of silicon nanopillars on a hitherto unexplored small scale have been used to study the wetting behavior on nanomodulated surfaces in a substantial range of surface treatments and geometrical parameters. With the use of optical reflectance measurements, the nanoscale water imbibition depths have been measured and the transition to the superhydrophobic Cassie-Baxter state has been accurately determined. For pillars of high aspect ratio (about 15), the transition occurs even when the surface is grafted with a hydrophilic functional group. We have found a striking consistent deviation between the contact angle measurements and the straightforward application of the classical wetting models. Molecular dynamics simulations show that these deviations can be attributed to the long overlooked atomic-scale surface perturbations that are introduced during the nanofabrication process. When the transition condition is approached, transient states of partial imbibition that characterize intermediate states between the Wenzel and Cassie-Baxter states are revealed in our experiments.

14.
Ultrason Sonochem ; 18(2): 595-600, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21041109

RESUMEN

A generic bubble structure in a 230 kHz ultrasonic field is observed in a partly developed standing wave field in water. It is characterized by high-speed imaging, sonoluminescence recordings, and surface cleaning tests. The structure has two distinct bubble populations. Bigger bubbles (much larger than linear resonance size) group on rings in planes parallel to the transducer surface, apparently in locations of driving pressure minima. They slowly rise in a jittering, but synchronous way, and they can have smaller satellite bubbles, thus resembling the arrays of bubbles observed by Miller [D. Miller, Stable arrays of resonant bubbles in a 1-MHz standing-wave acoustic field, J. Acoust. Soc. Am. 62 (1977) 12]. Smaller bubbles (below and near linear resonance size) show a fast "streamer" motion perpendicular to and away from the transducer surface. While the bigger bubbles do not emit light, the smaller bubbles in the streamers show sonoluminescence when they pass the planes of high driving pressure. Both bubble populations exhibit cleaning potential with respect to micro-particles attached to a glass substrate. The respective mechanisms of particle removal, though, might be different.


Asunto(s)
Gases/química , Ultrasonido , Mediciones Luminiscentes , Factores de Tiempo
15.
Ultrasonics ; 51(8): 1014-25, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21719064

RESUMEN

The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller-Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton's second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of pressure amplitude or a decrease of bubble size forces bubbles larger than their resonant size to arrive at the target plate at lower heights, while the trajectories of smaller bubbles are less influenced by these factors. The test cell is also suitable for testing the effects of drag force on the bubble motion and for studying the bubble behavior near a surface.


Asunto(s)
Acústica , Gases/química , Microburbujas , Diseño de Equipo , Movimiento (Física) , Propiedades de Superficie , Transductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA