Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cell ; 80(5): 779-795.e10, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33207181

RESUMEN

Protein aggregates disrupt cellular homeostasis, causing toxicity linked to neurodegeneration. Selective autophagic elimination of aggregates is critical to protein quality control, but how aggregates are selectively targeted for degradation is unclear. We compared the requirements for autophagy receptor proteins: OPTN, NBR1, p62, NDP52, and TAX1BP1 in clearance of proteotoxic aggregates. Endogenous TAX1BP1 is recruited to and required for the clearance of stress-induced aggregates, whereas ectopic expression of TAX1BP1 increases clearance through autophagy, promoting viability of human induced pluripotent stem cell-derived neurons. In contrast, TAX1BP1 depletion sensitizes cells to several forms of aggregate-induced proteotoxicity. Furthermore, TAX1BP1 is more specifically expressed in the brain compared to other autophagy receptor proteins. In vivo, loss of TAX1BP1 results in accumulation of high molecular weight ubiquitin conjugates and premature lipofuscin accumulation in brains of young TAX1BP1 knockout mice. TAX1BP1 mediates clearance of a broad range of cytotoxic proteins indicating therapeutic potential in neurodegenerative diseases.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/deficiencia , Autofagia , Encéfalo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Proteínas de Neoplasias/deficiencia , Enfermedades Neurodegenerativas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Encéfalo/patología , Femenino , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipofuscina/genética , Lipofuscina/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Ratas , Ratas Sprague-Dawley , Ubiquitina/genética , Ubiquitina/metabolismo
3.
J Biol Chem ; 294(30): 11498-11512, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31177092

RESUMEN

Neurolastin is a dynamin family GTPase that also contains a RING domain and exhibits both GTPase and E3 ligase activities. It is specifically expressed in the brain and is important for synaptic transmission, as neurolastin knockout animals have fewer dendritic spines and exhibit a reduction in functional synapses. Our initial study of neurolastin revealed that it is membrane-associated and partially co-localizes with endosomes. Using various biochemical and cell-culture approaches, we now show that neurolastin also localizes to mitochondria in HeLa cells, cultured neurons, and brain tissue. We found that the mitochondrial localization of neurolastin depends upon an N-terminal mitochondrial targeting sequence and that neurolastin is imported into the mitochondrial intermembrane space. Although neurolastin was only partially mitochondrially localized at steady state, it displayed increased translocation to mitochondria in response to neuronal stress and mitochondrial fragmentation. Interestingly, inactivation or deletion of neurolastin's RING domain also increased its mitochondrial localization. Using EM, we observed that neurolastin knockout animals have smaller but more numerous mitochondria in cerebellar Purkinje neurons, indicating that neurolastin regulates mitochondrial morphology. We conclude that the brain-specific dynamin GTPase neurolastin exhibits stress-responsive localization to mitochondria and is required for proper mitochondrial morphology.


Asunto(s)
Dinaminas/metabolismo , Mitocondrias/metabolismo , Células de Purkinje/metabolismo , Animales , Células Cultivadas , Dinaminas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/enzimología , Mutación , Transporte de Proteínas
4.
Microporous Mesoporous Mater ; 269: 156-159, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30337835

RESUMEN

Double pulsed-field gradient (dPFG) MRI is proposed as a new sensitive tool to detect and characterize tissue microstructure following diffuse axonal injury. In this study dPFG MRI was used to estimate apparent mean axon diameter in a diffuse axonal injury animal model and in healthy fixed mouse brain. Histological analysis was used to verify the presence of the injury detected by MRI.

5.
Neuroimage ; 135: 333-44, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27126002

RESUMEN

We report the development of a double diffusion encoding (DDE) MRI method to estimate and map the axon diameter distribution (ADD) within an imaging volume. A variety of biological processes, ranging from development to disease and trauma, may lead to changes in the ADD in the central and peripheral nervous systems. Unlike previously proposed methods, this ADD experimental design and estimation framework employs a more general, nonparametric approach, without a priori assumptions about the underlying form of the ADD, making it suitable to analyze abnormal tissue. In the current study, this framework was used on an ex vivo ferret spinal cord, while emphasizing the way in which the ADD can be weighted by either the number or the volume of the axons. The different weightings, which result in different spatial contrasts, were considered throughout this work. DDE data were analyzed to derive spatially resolved maps of average axon diameter, ADD variance, and extra-axonal volume fraction, along with a novel sub-micron restricted structures map. The morphological information contained in these maps was then used to segment white matter into distinct domains by using a proposed k-means clustering algorithm with spatial contiguity and left-right symmetry constraints, resulting in identifiable white matter tracks. The method was validated by comparing histological measures to the estimated ADDs using a quantitative similarity metric, resulting in good agreement. With further acquisition acceleration and experimental parameters adjustments, this ADD estimation framework could be first used preclinically, and eventually clinically, enabling a wide range of neuroimaging applications for improved understanding of neurodegenerative pathologies and assessing microstructural changes resulting from trauma.


Asunto(s)
Algoritmos , Axones/ultraestructura , Imagen de Difusión Tensora/métodos , Interpretación de Imagen Asistida por Computador/métodos , Sustancia Blanca/citología , Sustancia Blanca/diagnóstico por imagen , Animales , Interpretación Estadística de Datos , Hurones , Aumento de la Imagen/métodos , Técnicas In Vitro , Masculino , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribuciones Estadísticas
6.
Hum Mol Genet ; 19(7): 1347-57, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20067919

RESUMEN

Smith-Lemli-Opitz syndrome (SLOS) is a malformation syndrome with neurocognitive deficits due to mutations of DHCR7 that impair the reduction of 7-dehydrocholesterol to cholesterol. To investigate the pathological processes underlying the neurocognitive deficits, we compared protein expression in Dhcr7(+/+) and Dhcr7(Delta3-5/Delta3-5) brain tissue. One of the proteins identified was cofilin-1, an actin depolymerizing factor which regulates neuronal dendrite and axon formation. Differential expression of cofilin-1 was due to increased phosphorylation. Phosphorylation of cofilin-1 is regulated by Rho GTPases through Rho-Rock-Limk-Cofilin-1 and Rac/Cdc42-Pak-Limk-Cofilin-1 pathways. Pull-down assays were used to demonstrate increased activation of RhoA, Rac1 and Cdc42 in Dhcr7(Delta3-5/Delta3-5) brains. Consistent with increased activation of these Rho GTPases, we observed increased phosphorylation of both Limk and Pak in mutant brain tissue. Altered Rho/Rac signaling impairs normal dendritic and axonal formation, and mutations in genes encoding regulators and effectors of the Rho GTPases underlie other human mental retardation syndromes. Thus, we hypothesized that aberrant activation of Rho/Rac could have functional consequences for dendrite and axonal growth. In vitro analysis of Dhcr7(Delta3-5/Delta3-5) hippocampal neurons demonstrated both axonal and dendritic abnormalities. Developmental abnormalities of neuronal process formation may contribute to the neurocognitive deficits found in SLOS and may represent a potential target for therapeutic intervention.


Asunto(s)
Cofilina 1/metabolismo , Síndrome de Smith-Lemli-Opitz/genética , Proteínas de Unión al GTP rho/metabolismo , Animales , Axones/patología , Encéfalo/metabolismo , Colesterol/deficiencia , Dendritas/patología , Activación Enzimática , Quinasas Lim/metabolismo , Ratones , Mutación , Fosforilación , Transducción de Señal , Síndrome de Smith-Lemli-Opitz/patología
7.
PLoS Genet ; 3(6): e108, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17590087

RESUMEN

We observed a severe autosomal recessive movement disorder in mice used within our laboratory. We pursued a series of experiments to define the genetic lesion underlying this disorder and to identify a cognate disease in humans with mutation at the same locus. Through linkage and sequence analysis we show here that this disorder is caused by a homozygous in-frame 18-bp deletion in Itpr1 (Itpr1(Delta18/Delta18)), encoding inositol 1,4,5-triphosphate receptor 1. A previously reported spontaneous Itpr1 mutation in mice causes a phenotype identical to that observed here. In both models in-frame deletion within Itpr1 leads to a decrease in the normally high level of Itpr1 expression in cerebellar Purkinje cells. Spinocerebellar ataxia 15 (SCA15), a human autosomal dominant disorder, maps to the genomic region containing ITPR1; however, to date no causal mutations had been identified. Because ataxia is a prominent feature in Itpr1 mutant mice, we performed a series of experiments to test the hypothesis that mutation at ITPR1 may be the cause of SCA15. We show here that heterozygous deletion of the 5' part of the ITPR1 gene, encompassing exons 1-10, 1-40, and 1-44 in three studied families, underlies SCA15 in humans.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/genética , Eliminación de Secuencia , Ataxias Espinocerebelosas/genética , Animales , Secuencia de Bases , Línea Celular Transformada , Femenino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular
8.
Cell Calcium ; 41(2): 155-67, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16905188

RESUMEN

The hypothesis that calcium signaling proteins segregate into lipid raft-like microdomains was tested in isolated membranes of rat oligodendrocyte progenitor (OP) cells and astrocytes using Triton X-100 solubilization and density gradient centrifugation. Western blot analysis of gradient fractions showed co-localization of caveolin-1 with proteins involved in the Ca2+ signaling cascade. These included agonist receptors, P2Y1, and M1, TRPC1, IP3R2, ryanodine receptor, as well as the G protein Galphaq and Homer. Membranes isolated from agonist-stimulated astrocytes showed an enhanced recruitment of phospholipase C (PLCbeta1), IP3R2 and protein kinase C (PKC-alpha) into lipid raft fractions. IP3R2, TRPC1 and Homer co-immunoprecipitated, suggesting protein-protein interactions. Disruption of rafts by cholesterol depletion using methyl-beta-cyclodextrin (beta-MCD) altered the distribution of caveolin-1 and GM1 to non-raft fractions with higher densities. beta-MCD-induced disruption of rafts inhibited agonist-evoked Ca2+ wave propagation in astrocytes and attenuated wave speeds. These results indicate that in glial cells, Ca2+ signaling proteins might exist in organized membrane microdomains, and these complexes may include proteins from different cellular membrane systems. Such an organization is essential for Ca2+ wave propagation.


Asunto(s)
Señalización del Calcio , Calcio/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microdominios de Membrana/metabolismo , Neuroglía/metabolismo , Animales , Astrocitos/metabolismo , Calcio/metabolismo , Caveolina 1/metabolismo , Células Cultivadas , Colesterol/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Microdominios de Membrana/fisiología , Octoxinol/farmacología , Ratas , Solubilidad
9.
J Neurosci Methods ; 181(2): 212-26, 2009 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-19454294

RESUMEN

Glial cell Ca2+ signals play a key role in glial-neuronal and glial-glial network communication. Numerous studies have thus far utilized cell-permeant and injected Ca2+ indicator dyes to investigate glial Ca2+ signals in vitro and in situ. Genetically encoded fluorescent Ca2+ indicators have emerged as novel probes for investigating cellular Ca2+ signals. We have expressed one such indicator protein, the YC 3.60 cameleon, under the control of the S100beta promoter and directed its expression predominantly in astrocytes and Schwann cells. Expression of YC 3.60 extended into the entire cellular cytoplasmic compartment and the fine terminal processes of protoplasmic astrocytes and Schwann cell Cajal bands. In the brain, all the cells known to express S100beta in the adult or during development, expressed YC 3.60. While expression was most extensive in astrocytes, other glial cell types that express S100beta, such as NG2 and CNP-positive oligodendrocyte progenitor cells (OP cells), microglia, and some of the large motor neurons in the brain stem, also contained YC 3.60 fluorescence. Using a variety of known in situ and in vivo assays, we found that stimuli known to elicit Ca2+ signals in astrocytes caused substantial and rapid Ca2+ signals in the YC 3.60-expressing astrocytes. In addition, forepaw stimulation while imaging astrocytes through a cranial window in the somatosensory cortex in live mice, revealed robust evoked and spontaneous Ca2+ signals. These results, for the first time, show that genetically encoded reporter is capable of recording activity-dependent Ca2+ signals in the astrocyte processes, and networks.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio/fisiología , Células de Schwann/metabolismo , Corteza Somatosensorial/metabolismo , Animales , Astrocitos/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Cerebelo/metabolismo , Potenciales Evocados Somatosensoriales/fisiología , Colorantes Fluorescentes , Ácido Glutámico/farmacología , Hipocampo/metabolismo , Inmunohistoquímica , Ratones , Ratones Transgénicos , Células de Schwann/efectos de los fármacos , Corteza Somatosensorial/citología , Corteza Somatosensorial/efectos de los fármacos
10.
Glia ; 39(1): 69-84, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12112377

RESUMEN

Astrocytes respond to neuronal activity by propagating Ca(2+) waves elicited through the inositol 1,4,5-trisphosphate pathway. We have previously shown that wave propagation is supported by specialized Ca(2+) release sites, where a number of proteins, including inositol 1,4,5-trisphosphate receptors (IP(3)R), occur together in patches. The specific IP(3)R isoform expressed by astrocytes in situ in rat brain is unknown. In the present report, we use isoform-specific antibodies to localize immunohistochemically the IP(3)R subtype expressed in astrocytes in rat brain sections. Astrocytes were identified using antibodies against the astrocyte-specific markers, S-100 beta, or GFAP. Dual indirect immunohistochemistry showed that astrocytes in all regions of adult rat brain express only IP(3)R2. High-resolution analysis showed that hippocampal astrocytes are endowed with a highly branched network of processes that bear fine hair-like extensions containing punctate patches of IP(3)R2 staining in intimate contact with synapses. Such an organization is reminiscent of signaling microdomains found in cultured glial cells. Similarly, Bergmann glial cell processes in the cerebellum also contained fine hair-like processes containing IP(3)R2 staining. The IP(3)R2-containing fine terminal branches of astrocyte processes in both brain regions were found juxtaposed to presynaptic terminals containing synaptophysin as well as PSD 95-containing postsynaptic densities. Corpus callosum astrocytes had an elongated morphology with IP(3)R2 studded processes extending along fiber tracts. Our data suggest that PLC-mediated Ca(2+) signaling in astrocytes in rat brain occurs predominantly through IP(3)R2 ion channels. Furthermore, the anatomical arrangement of the terminal astrocytic branches containing IP(3)R2 ensheathing synapses is ideal for supporting glial monitoring of neuronal activity.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Canales de Calcio/biosíntesis , Inositol 1,4,5-Trifosfato/metabolismo , Receptores Citoplasmáticos y Nucleares/biosíntesis , Secuencia de Aminoácidos , Animales , Anticuerpos/química , Anticuerpos/metabolismo , Astrocitos/química , Sitios de Unión de Anticuerpos , Canales de Calcio/análisis , Canales de Calcio/inmunología , Cerebelo/citología , Cerebelo/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Inmunohistoquímica , Receptores de Inositol 1,4,5-Trifosfato , Masculino , Datos de Secuencia Molecular , Ratas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/análisis , Receptores Citoplasmáticos y Nucleares/inmunología , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA