Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 186(1): 80-97.e26, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608661

RESUMEN

Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation.


Asunto(s)
ARN Helicasas DEAD-box , Glucosa , Queratinocitos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glucosa/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Humanos
2.
Genes Dev ; 34(7-8): 511-525, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32115406

RESUMEN

The Hippo pathway is a master regulator of tissue homeostasis and organ size. NF2 is a well-established tumor suppressor, and loss of NF2 severely compromises Hippo pathway activity. However, the precise mechanism of how NF2 mediates upstream signals to regulate the Hippo pathway is not clear. Here we report that, in mammalian cells, NF2's lipid-binding ability is critical for its function in activating the Hippo pathway in response to osmotic stress. Mechanistically, osmotic stress induces PI(4,5)P2 plasma membrane enrichment by activating the PIP5K family, allowing for NF2 plasma membrane recruitment and subsequent downstream Hippo pathway activation. An NF2 mutant deficient in lipid binding is unable to activate the Hippo pathway in response to osmotic stress, as measured by LATS and YAP phosphorylation. Our findings identify the PIP5K family as novel regulators upstream of Hippo signaling, and uncover the importance of phosphoinositide dynamics, specifically PI(4,5)P2, in Hippo pathway regulation.


Asunto(s)
Homeostasis/fisiología , Neurofibromina 2/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Vía de Señalización Hippo , Humanos , Ratones , Neurofibromina 2/genética , Presión Osmótica/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Proteínas Señalizadoras YAP
3.
Nature ; 560(7720): 655-660, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30135582

RESUMEN

Mammalian cells are surrounded by neighbouring cells and extracellular matrix (ECM), which provide cells with structural support and mechanical cues that influence diverse biological processes1. The Hippo pathway effectors YAP (also known as YAP1) and TAZ (also known as WWTR1) are regulated by mechanical cues and mediate cellular responses to ECM stiffness2,3. Here we identified the Ras-related GTPase RAP2 as a key intracellular signal transducer that relays ECM rigidity signals to control mechanosensitive cellular activities through YAP and TAZ. RAP2 is activated by low ECM stiffness, and deletion of RAP2 blocks the regulation of YAP and TAZ by stiffness signals and promotes aberrant cell growth. Mechanistically, matrix stiffness acts through phospholipase Cγ1 (PLCγ1) to influence levels of phosphatidylinositol 4,5-bisphosphate and phosphatidic acid, which activates RAP2 through PDZGEF1 and PDZGEF2 (also known as RAPGEF2 and RAPGEF6). At low stiffness, active RAP2 binds to and stimulates MAP4K4, MAP4K6, MAP4K7 and ARHGAP29, resulting in activation of LATS1 and LATS2 and inhibition of YAP and TAZ. RAP2, YAP and TAZ have pivotal roles in mechanoregulated transcription, as deletion of YAP and TAZ abolishes the ECM stiffness-responsive transcriptome. Our findings show that RAP2 is a molecular switch in mechanotransduction, thereby defining a mechanosignalling pathway from ECM stiffness to the nucleus.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rap/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Transformación Celular Neoplásica , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Quinasas del Centro Germinal , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Vía de Señalización Hippo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Proteínas del Tejido Nervioso/metabolismo , Fosfolipasa C gamma/metabolismo , Fosfoproteínas/metabolismo , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Transcriptoma , Proteínas Señalizadoras YAP , Proteínas de Unión al GTP rap/genética
4.
Mol Cell ; 64(5): 993-1008, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912098

RESUMEN

The Hippo pathway is important for regulating tissue homeostasis, and its dysregulation has been implicated in human cancer. However, it is not well understood how the Hippo pathway becomes dysregulated because few mutations in core Hippo pathway components have been identified. Therefore, much work in the Hippo field has focused on identifying upstream regulators, and a complex Hippo interactome has been identified. Nevertheless, it is not always clear which components are the most physiologically relevant in regulating YAP/TAZ. To provide an overview of important Hippo pathway components, we created knockout cell lines for many of these components and compared their relative contributions to YAP/TAZ regulation in response to a wide range of physiological signals. By this approach, we provide an overview of the functional importance of many Hippo pathway components and demonstrate NF2 and RHOA as important regulators of YAP/TAZ and TAOK1/3 as direct kinases for LATS1/2.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Transducción de Señal/genética , Aciltransferasas , Proteínas de Ciclo Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas de Silenciamiento del Gen , Células HEK293 , Vía de Señalización Hippo , Humanos , Neurofibromina 2 , Proteínas Nucleares , Fosforilación , Proteínas Serina-Treonina Quinasas , Factores de Transcripción , Proteínas Supresoras de Tumor , Proteína de Unión al GTP rhoA
5.
EMBO Rep ; 18(1): 72-86, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27979971

RESUMEN

YAP is the major downstream effector of the Hippo pathway, which controls cell growth, tissue homeostasis, and organ size. Aberrant YAP activation, resulting from dysregulation of the Hippo pathway, is frequently observed in human cancers. YAP is a transcription co-activator, and the key mechanism of YAP regulation is its nuclear and cytoplasmic translocation. The Hippo pathway component, LATS, inhibits YAP by phosphorylating YAP at Ser127, leading to 14-3-3 binding and cytoplasmic retention of YAP Here, we report that osmotic stress stimulates transient YAP nuclear localization and increases YAP activity even when YAP Ser127 is phosphorylated. Osmotic stress acts via the NLK kinase to induce YAP Ser128 phosphorylation. Phosphorylation of YAP at Ser128 interferes with its ability to bind to 14-3-3, resulting in YAP nuclear accumulation and induction of downstream target gene expression. This osmotic stress-induced YAP activation enhances cellular stress adaptation. Our findings reveal a critical role for NLK-mediated Ser128 phosphorylation in YAP regulation and a crosstalk between osmotic stress and the Hippo pathway.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Presión Osmótica , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Factores de Transcripción/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Nucléolo Celular , Citoplasma/metabolismo , Activación Enzimática , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Transporte de Proteínas , Serina/química , Transducción de Señal
6.
Elife ; 82019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31112131

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) regulates cell growth, metabolism, and autophagy. Extensive research has focused on pathways that activate mTORC1 like growth factors and amino acids; however, much less is known about signaling cues that directly inhibit mTORC1 activity. Here, we report that G-protein coupled receptors (GPCRs) paired to Gαs proteins increase cyclic adenosine 3'5' monophosphate (cAMP) to activate protein kinase A (PKA) and inhibit mTORC1. Mechanistically, PKA phosphorylates the mTORC1 component Raptor on Ser 791, leading to decreased mTORC1 activity. Consistently, in cells where Raptor Ser 791 is mutated to Ala, mTORC1 activity is partially rescued even after PKA activation. Gαs-coupled GPCRs stimulation leads to inhibition of mTORC1 in multiple cell lines and mouse tissues. Our results uncover a signaling pathway that directly inhibits mTORC1, and suggest that GPCRs paired to Gαs proteins may be potential therapeutic targets for human diseases with hyperactivated mTORC1.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional , Receptores Acoplados a Proteínas G/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal , Animales , Línea Celular , Humanos , Fosforilación
7.
Bio Protoc ; 7(14)2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-29104896

RESUMEN

This protocol describes a method to directly measure LATS activity by an in vitro kinase assay using YAP as a substrate.

8.
Nat Rev Gastroenterol Hepatol ; 13(6): 324-37, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27147489

RESUMEN

The Hippo pathway is a signalling cascade conserved from Drosophila melanogaster to mammals. The mammalian core kinase components comprise MST1 and MST2, SAV1, LATS1 and LATS2 and MOB1A and MOB1B. The transcriptional co-activators YAP1 and TAZ are the downstream effectors of the Hippo pathway and regulate target gene expression. Hippo signalling has crucial roles in the control of organ size, tissue homeostasis and regeneration, and dysregulation of the Hippo pathway can lead to uncontrolled cell growth and malignant transformation. Mammalian intestine consists of a stem cell compartment as well as differentiated cells, and its ability to regenerate rapidly after injury makes it an excellent model system to study tissue homeostasis, regeneration and tumorigenesis. Several studies have established the important role of the Hippo pathway in these processes. In addition, crosstalk between Hippo and other signalling pathways provides tight, yet versatile, regulation of tissue homeostasis. In this Review, we summarize studies on the role of the Hippo pathway in the intestine on these physiological processes and the underlying mechanisms responsible, and discuss future research directions and potential therapeutic strategies targeting Hippo signalling in intestinal disease.


Asunto(s)
Intestino Grueso/fisiología , Intestino Delgado/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Carcinogénesis/metabolismo , Adhesión Celular/fisiología , Neoplasias del Colon/fisiopatología , Drosophila melanogaster , Proteínas Hedgehog/metabolismo , Vía de Señalización Hippo , Homeostasis/fisiología , Humanos , Síndrome del Colon Irritable/fisiopatología , Neoplasias Hepáticas/fisiopatología , Mamíferos , Tamaño de los Órganos , Fosfoproteínas/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Receptores Notch/metabolismo , Estrés Fisiológico/fisiología , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/fisiología , Proteínas Señalizadoras YAP
9.
Trends Mol Med ; 21(4): 212-22, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25702974

RESUMEN

The Hippo signaling pathway is important for controlling organ size and tissue homeostasis. Originally identified in Drosophila melanogaster, the core components of the Hippo pathway are highly conserved in mammals. The Hippo pathway can be modulated by a wide range of stimuli, including G protein-coupled receptor (GPCR) signaling, changes in the actin cytoskeleton, cell-cell contact, and cell polarity. When activated, the Hippo pathway functions as a tumor suppressor to limit cell growth. However, dysregulation by genetic inactivation of core pathway components or amplification or gene fusion of its downstream effectors results in increased cell proliferation and decreased apoptosis and differentiation. Unsurprisingly, this can lead to tissue overgrowth, tumorigenesis, and many other diseases.


Asunto(s)
Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Animales , Apoptosis , Carcinogénesis , Proliferación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Hippo , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mamíferos , Neoplasias/patología , Proteínas Nucleares/genética , Tamaño de los Órganos , Proteínas Serina-Treonina Quinasas/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
10.
Nat Commun ; 6: 8357, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26437443

RESUMEN

The Hippo pathway plays a central role in tissue homoeostasis, and its dysregulation contributes to tumorigenesis. Core components of the Hippo pathway include a kinase cascade of MST1/2 and LATS1/2 and the transcription co-activators YAP/TAZ. In response to stimulation, LATS1/2 phosphorylate and inhibit YAP/TAZ, the main effectors of the Hippo pathway. Accumulating evidence suggests that MST1/2 are not required for the regulation of YAP/TAZ. Here we show that deletion of LATS1/2 but not MST1/2 abolishes YAP/TAZ phosphorylation. We have identified MAP4K family members--Drosophila Happyhour homologues MAP4K1/2/3 and Misshapen homologues MAP4K4/6/7-as direct LATS1/2-activating kinases. Combined deletion of MAP4Ks and MST1/2, but neither alone, suppresses phosphorylation of LATS1/2 and YAP/TAZ in response to a wide range of signals. Our results demonstrate that MAP4Ks act in parallel to and are partially redundant with MST1/2 in the regulation of LATS1/2 and YAP/TAZ, and establish MAP4Ks as components of the expanded Hippo pathway.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Aciltransferasas , Animales , Western Blotting , Carcinogénesis/genética , Proteínas de Ciclo Celular , Línea Celular Tumoral , Drosophila , Proteínas de Drosophila , Técnica del Anticuerpo Fluorescente , Quinasas del Centro Germinal , Células HEK293 , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Vía de Señalización Hippo , Homeostasis/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina-Treonina Quinasa 3 , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA