RESUMEN
N-(4-Biphenylyl)-N-cyclopropyl nitrenium ion 5 and N-benzyl-N-cyclopropyl nitrenium ion (6) were generated through photolysis of their corresponding N-aminopyridinium ion photoprecursors. In the case of 5, stable products result from a combination of cyclopropyl ring expansion (N-biphenylazetium ion) and ethylene elimination (biphenylisonitrilium ion). When present in high concentrations, methanol can add to the cyclopropyl ring-forming N-3-methoxypropyl-N-biphenyl iminium ion. In contrast, the only detectable product from the N-benzyl-N-cyclopropyl nitrenium ion (6) is benzylisonitrile, resulting from the elimination of ethylene. Density functional theory (DFT) calculations predict the product distributions from the more stable biphenyl system 5 with reasonable accuracy. However, product distributions from the less stable benzyl system 6 are forecast with less accuracy.
RESUMEN
Recognizing the holistic definitions of sexual health, health-care providers must approach sexual health history taking with sensitivity, inclusivity, and a trauma-informed perspective. Many versions of what a sexual history should look like exist but certain principles are commonly found. Education of health-care providers on sexual history taking can involve reviewing the components of the sexual history but should also include the importance of using nonstigmatizing language, having a patient-centered approach, and practicing trauma-informed and culturally sensitive care.
Asunto(s)
Conducta Sexual , Salud Sexual , Humanos , Salud Sexual/educaciónRESUMEN
The solvent is an important, yet often forgotten part of a reaction mechanism. Many photochemical polymerizations are carried out using dimethyl sulfoxide (DMSO) as a way to promote the solubility of both the reactants and products, but its reactivity is rarely considered when initiation mechanisms are proposed. Herein, the oxidation of DMSO by an excited-state quinone is used to form initiating radicals resulting in the polymerization of methacrylate monomers, and the polymerization can be controlled with the addition of a chain transfer agent. This process leads to the formation of polymers with narrow molecular weight distribution, and the polymerization is able to be carried out in the presence of oxygen. A visible light absorbing substituted anthraquinone is synthesized, and nanosecond transient absorption spectroscopy is used to monitor the intermediates involved in the initiation mechanism. Photoproduct analysis indicates formation of methyl radicals as a result of DMSO oxidation. Furthermore, we show that the solvent outcompetes the chain transfer agent for interacting with the excited-state anthraquinone. These observations have a broad impact on photoinduced polymerizations performed in DMSO as many photocatalysts are strong oxidants in the excited state and are capable of reacting with the solvent. Therefore, the role of the solvent needs to be more carefully considered when proposing mechanisms for photoinduced polymerizations in DMSO.