Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446356

RESUMEN

In order to explore the effects of high temperature stress on the physiological characteristics of Paeonia ostii, the Paeonia ostii were subjected to 25 °C, 35 °C, 38 °C, and 40 °C for 7 days. Meanwhile, the physiological indicators of oxidative stress (hydrogen peroxide, H2O2; malondialdehyde, MDA; relative electrical conductivity, REC), antioxidant enzyme activity (superoxide dismutase, SOD; ascorbate peroxidase, APX; catalase, CAT; peroxidase, POD), photosynthetic pigment content (chlorophyll a, Chla; chlorophyll b, Chlb), photosynthetic characteristics (net photosynthetic rate, Pn; intercellular CO2 concentration, Ci; stomatal conductance, Gs; transpiration rate, Tr), and osmoregulatory substances content (soluble protein, SP; soluble sugar, SS) were determined. The results showed that, with the increase in temperature and stress time, the H2O2 content, MDA content, REC value, CAT activity, and APX activity increased, while Chla content, Chlb content, SS content, and SP content decreased. With the extension of stress time, the SOD activity, POD activity, and Tr value of each high temperature stress group first increased and then decreased; Ci first decreased, then increased, and then decreased; meanwhile, Pn and Gs showed an overall downward trend. PLS-DA (partial least squares discriminant analysis) was used to analyze the changes in physiological and biochemical indexes of peony leaves under 40 °C stress for different days. SOD was found to be the biggest factor affecting the changes in physiological and biochemical indexes of peony leaves treated with different days of stress.


Asunto(s)
Paeonia , Paeonia/metabolismo , Clorofila A , Temperatura , Peróxido de Hidrógeno/metabolismo , Clorofila/metabolismo , Fotosíntesis , Antioxidantes/farmacología , Superóxido Dismutasa/metabolismo , Hojas de la Planta/metabolismo , Estrés Fisiológico
2.
Front Plant Sci ; 13: 1046881, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407591

RESUMEN

The efficient induction of peony embryogenic callus is of great significance to the improvement and establishment of its regeneration technology system. In this study, the in vitro embryos of 'Fengdanbai' at different developmental stages were selected as explants, the effects of different concentrations and types of plant growth regulator combinations on the induction and proliferation of embryonic callus at different developmental stages were investigated, and comparative transcriptome analysis of callus with different differentiation potentials were performed to explore the molecular mechanisms affecting callus differentiation. The results showed that the germination rate of 90d seed embryo was the best, which was 94.17%; the 70d and 80d cotyledon callus induction effect was the best, both reaching 100%, but the 80d callus proliferation rate was higher, the proliferation rate reached 5.31, and the optimal induction medium was MS+0.1 mg·L-1NAA+0.3 mg·L-1TDZ+3 mg·L-12,4-D, the callus proliferation multiple was 4.77. Based on the comparative transcriptomic analysis, we identified 3470 differentially expressed genes (DEGs) in the callus with high differentiation rate and low differentiation rate, including 1767 up-regulated genes and 1703 down-regulated genes. Pathway enrichment analysis showed that the "Phenylpropanoid biosynthesis" metabolic pathway was significantly enriched, which is associated with promoting further development of callus shoots and roots. This study can provide reference for genetic improvement and the improvement of regeneration technology system of peony.

3.
Front Plant Sci ; 13: 969718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388495

RESUMEN

In order to investigate the causes of the differences in heat tolerance ('Lu He Hong' and 'Zhi Hong'), we studied the physiological changes, photosynthetic properties and regulatory mechanism of the two peony cultivars at high temperature. The results showed that the physiological changed of different peony cultivars varied significantly under high temperature stress. With the extension of high temperature stress time, MDA content of 'Lu He Hong' increased,while 'Zhi Hong' rised first and then decreased, SOD activity of 'Lu He Hong' rised first and then decreased, that of 'Zhi Hong' kept rising, POD activity of 'Lu He Hong' kept decreasing, while 'Zhi Hong' rised. The photosynthetic instrument records the change of peony photosynthesis parameters at high temperature; the chlorophyll A (Chla) fluorescence transient is recorded using the plant efficiency analyzer (PEA), analyzed according to the JIP test (O-J-I-P fluorescence transient analysis), and several parameters were derived to explain the photosynthetic efficiency difference between different peony cultivars. The tested cultivars responded differently to the survey conditions, and the PCA analysis showed that the 'Zhi Hong' was more well tolerated and showed better thermal stability of the PSII. The reduced efficiency of the 'Lu He Hong' PSII antenna leads to higher heat dissipation values to increase the light energy absorbed by unit reaction center (ABS/RC), the energy captured by unit reaction center (TR0/RC), and the energy dissipated by unit reaction center (DI0/RC), which significantly leads to its lower total photosynthetic performance (PItotal). The light capture complex of the variety 'Zhi Hong' has high connectivity with its reaction center, less damage to OEC activity, and better stability of the PSII system. The results show that 'Zhi Hong' improves heat resistance by stabilizing the cell membrane, a strong antioxidant system, as well as a more stable photosynthetic system. The results of this study provide a theoretical basis for the screening of heat-resistant peonies suitable for cultivation in Jiangnan area and for the selection and breeding of heat-resistant cultivars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA