Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Cell Rep ; 43(2): 47, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302779

RESUMEN

KEY MESSAGE: The first in-depth characterization of a subfamily III Snakin/GASA member was performed providing experimental evidence on promoter activity and subcellular localization and unveiling a role of potato Snakin-3 in defense Snakin/GASA proteins share 12 cysteines in conserved positions in the C-terminal region. Most of them were involved in different aspects of plant growth and development, while a small number of these peptides were reported to have antimicrobial activity or participate in abiotic stress tolerance. In potato, 18 Snakin/GASA genes were identified and classified into three groups based on phylogenetic analysis. Snakin-1 and Snakin-2 are members of subfamilies I and II, respectively, and were reported to be implicated not only in defense against pathogens but also in plant development. In this work, we present the first in-depth characterization of Snakin-3, a member of the subfamily III within the Snakin/GASA gene family of potato. Transient co-expression of Snakin-3 fused to the green fluorescent protein and organelle markers revealed that it is located in the endoplasmic reticulum. Furthermore, expression analyses via pSnakin-3::GUS transgenic plants showed GUS staining mainly in roots and vascular tissues of the stem. Moreover, GUS expression levels were increased after inoculation with Pseudomonas syringae pv. tabaci or Pectobacterium carotovorum subsp. carotovorum and also after auxin treatment mainly in roots and stems. To gain further insights into the function of Snakin-3 in planta, potato overexpressing lines were challenged against P. carotovorum subsp. carotovorum showing enhanced tolerance to this bacterial pathogen. In sum, here we report the first functional characterization of a Snakin/GASA gene from subfamily III in Solanaceae. Our findings provide experimental evidence on promoter activity and subcellular localization and reveal a role of potato Snakin-3 in plant defense.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Plantas Modificadas Genéticamente/genética , Péptidos/genética
2.
Ann Bot ; 128(1): 115-125, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33693521

RESUMEN

BACKGROUND AND AIMS: The number of plastome sequences has increased exponentially during the last decade. However, there is still little knowledge of the levels and distribution of intraspecific variation. The aims of this study were to estimate plastome diversity within Zea mays and analyse the distribution of haplotypes in connection with the landrace groups previously delimited for South American maize based on nuclear markers. METHODS: We obtained the complete plastomes of 30 South American maize landraces and three teosintes by means of next-generation sequencing (NGS) and used them in combination with data from public repositories. After quality filtering, the curated data were employed to search for single-nucleotide polymorphisms, indels and chloroplast simple sequence repeats. Exact permutational contingency tests were performed to assess associations between plastome and nuclear variation. Network and Bayesian phylogenetic analyses were used to infer evolutionary relationships among haplotypes. KEY RESULTS: Our analyses identified a total of 124 polymorphic plastome loci, with the intergenic regions psbE-rps18, petN-rpoB, trnL_UAG-ndhF and rpoC2-atpI exhibiting the highest marker densities. Although restricted in number, these markers allowed the discrimination of 27 haplotypes in a total of 51 Zea mays individuals. Andean and lowland South American landraces differed significantly in haplotype distribution. However, overall differentiation patterns were not informative with respect to subspecies diversification, as evidenced by the scattered distribution of maize and teosinte plastomes in both the network and Bayesian phylogenetic reconstructions. CONCLUSIONS: Knowledge of intraspecific plastome variation provides the framework for a more comprehensive understanding of evolutionary processes at low taxonomic levels and may become increasingly important for future plant barcoding efforts. Whole-plastome sequencing provided useful variability to contribute to maize phylogeographic studies. The structuring of haplotype diversity in the maize landraces examined here clearly reflects the distinction between the Andean and South American lowland gene pools previously inferred based on nuclear markers.


Asunto(s)
Pool de Genes , Zea mays , Teorema de Bayes , Cloroplastos , Variación Genética , Genómica , Filogenia , Filogeografía , América del Sur , Zea mays/genética
3.
Plant Biotechnol J ; 14(2): 719-34, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26132509

RESUMEN

Leaf senescence is a complex process, which has dramatic consequences on crop yield. In sunflower, gap between potential and actual yields reveals the economic impact of senescence. Indeed, sunflower plants are incapable of maintaining their green leaf area over sustained periods. This study characterizes the leaf senescence process in sunflower through a systems biology approach integrating transcriptomic and metabolomic analyses: plants being grown under both glasshouse and field conditions. Our results revealed a correspondence between profile changes detected at the molecular, biochemical and physiological level throughout the progression of leaf senescence measured at different plant developmental stages. Early metabolic changes were detected prior to anthesis and before the onset of the first senescence symptoms, with more pronounced changes observed when physiological and molecular variables were assessed under field conditions. During leaf development, photosynthetic activity and cell growth processes decreased, whereas sucrose, fatty acid, nucleotide and amino acid metabolisms increased. Pathways related to nutrient recycling processes were also up-regulated. Members of the NAC, AP2-EREBP, HB, bZIP and MYB transcription factor families showed high expression levels, and their expression level was highly correlated, suggesting their involvement in sunflower senescence. The results of this study thus contribute to the elucidation of the molecular mechanisms involved in the onset and progression of leaf senescence in sunflower leaves as well as to the identification of candidate genes involved in this process.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Helianthus/genética , Helianthus/metabolismo , Metabolómica/métodos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas , Iones , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/genética , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
4.
Plant Physiol ; 158(1): 252-63, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22080603

RESUMEN

Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense.


Asunto(s)
Pared Celular/química , Proteínas de Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , División Celular , Membrana Celular/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Solanaceae/genética , Solanum tuberosum/citología , Espectroscopía Infrarroja por Transformada de Fourier
5.
BMC Genomics ; 13: 291, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22747958

RESUMEN

BACKGROUND: Nothofagus nervosa is one of the most emblematic native tree species of Patagonian temperate forests. Here, the shotgun RNA-sequencing (RNA-Seq) of the transcriptome of N. nervosa, including de novo assembly, functional annotation, and in silico discovery of potential molecular markers to support population and associations genetic studies, are described. RESULTS: Pyrosequencing of a young leaf cDNA library generated a total of 111,814 high quality reads, with an average length of 447 bp. De novo assembly using Newbler resulted into 3,005 tentative isotigs (including alternative transcripts). The non-assembled sequences (singletons) were clustered with CD-HIT-454 to identify natural and artificial duplicates from pyrosequencing reads, leading to 21,881 unique singletons. 15,497 out of 24,886 non-redundant sequences or unigenes, were successfully annotated against a plant protein database. A substantial number of simple sequence repeat markers (SSRs) were discovered in the assembled and annotated sequences. More than 40% of the SSR sequences were inside ORF sequences. To confirm the validity of these predicted markers, a subset of 73 SSRs selected through functional annotation evidences were successfully amplified from six seedlings DNA samples, being 14 polymorphic. CONCLUSIONS: This paper is the first report that shows a highly precise representation of the mRNAs diversity present in young leaves of a native South American tree, N. nervosa, as well as its in silico deduced putative functionality. The reported Nothofagus transcriptome sequences represent a unique resource for genetic studies and provide a tool to discover genes of interest and genetic markers that will greatly aid questions involving evolution, ecology, and conservation using genetic and genomic approaches in the genus.


Asunto(s)
Fagus/genética , Transcriptoma , Argentina , Biblioteca de Genes , Marcadores Genéticos , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , ARN de Planta/genética , Análisis de Secuencia de ADN
6.
PLoS One ; 17(12): e0271424, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36542628

RESUMEN

Maize (Zea mays ssp. mays) is a major cereal crop worldwide and is traditionally or commercially cultivated almost all over the Americas. The North-Western Argentina (NWA) region constitutes one of the main diversity hotspots of the Southern Andes, with contrasting landscapes and a large number of landraces. Despite the extensive collections performed by the "Banco Activo de Germoplasma INTA Pergamino, Argentina" (BAP), most of them have not been characterized yet. Here we report the morphological and molecular evaluation of 30 accessions collected from NWA, along an altitudinal gradient between 1120 and 2950 meters above sea level (masl). Assessment of morphological variation in a common garden allowed the discrimination of two groups, which differed mainly in endosperm type and overall plant size. Although the groups retrieved by the molecular analyses were not consistent with morphological clusters, they showed a clear pattern of altitudinal structuring. Affinities among accessions were not in accordance with racial assignments. Overall, our results revealed that there are two maize gene pools co-existing in NWA, probably resulting from various waves of maize introduction in pre-Columbian times as well as from the adoption of modern varieties by local farmers. In conclusion, the NWA maize landraces preserved at the BAP possess high morphological and molecular variability. Our results highlight their potential as a source of diversity for increasing the genetic basis of breeding programs and provide useful information to guide future sampling and conservation efforts.


Asunto(s)
Variación Genética , Zea mays , Zea mays/genética , Fitomejoramiento , Argentina , Productos Agrícolas/genética
7.
Front Plant Sci ; 12: 768197, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917104

RESUMEN

Citrus are among the most prevailing fruit crops produced worldwide. The implementation of effective and reliable breeding programs is essential for coping with the increasing demands of satisfactory yield and quality of the fruit as well as to deal with the negative impact of fast-spreading diseases. Conventional methods are time-consuming and of difficult application because of inherent factors of citrus biology, such as their prolonged juvenile period and a complex reproductive stage, sometimes presenting infertility, self-incompatibility, parthenocarpy, or polyembryony. Moreover, certain desirable traits are absent from cultivated or wild citrus genotypes. All these features are challenging for the incorporation of the desirable traits. In this regard, genetic engineering technologies offer a series of alternative approaches that allow overcoming the difficulties of conventional breeding programs. This review gives a detailed overview of the currently used strategies for the development of genetically modified citrus. We describe different aspects regarding genotype varieties used, including elite cultivars or extensively used scions and rootstocks. Furthermore, we discuss technical aspects of citrus genetic transformation procedures via Agrobacterium, regular physical methods, and magnetofection. Finally, we describe the selection of explants considering young and mature tissues, protoplast isolation, etc. We also address current protocols and novel approaches for improving the in vitro regeneration process, which is an important bottleneck for citrus genetic transformation. This review also explores alternative emerging transformation strategies applied to citrus species such as transient and tissue localized transformation. New breeding technologies, including cisgenesis, intragenesis, and genome editing by clustered regularly interspaced short palindromic repeats (CRISPR), are also discussed. Other relevant aspects comprising new promoters and reporter genes, marker-free systems, and strategies for induction of early flowering, are also addressed. We provided a future perspective on the use of current and new technologies in citrus and its potential impact on regulatory processes.

8.
PLoS One ; 14(3): e0214165, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30909287

RESUMEN

Snakin-1 is a member of the Solanum tuberosum Snakin/GASA family. We previously demonstrated that Snakin-1 is involved in plant defense to pathogens as well as in plant growth and development, but its mechanism of action has not been completely elucidated yet. Here, we showed that leaves of Snakin-1 silenced potato transgenic plants exhibited increased levels of reactive oxygen species and significantly reduced content of ascorbic acid. Furthermore, Snakin-1 silencing enhanced salicylic acid content in accordance with an increased expression of SA-inducible PRs genes. Interestingly, gibberellic acid levels were also enhanced and transcriptome analysis revealed that a large number of genes related to sterol biosynthesis were downregulated in these silenced lines. Moreover, we demonstrated that Snakin-1 directly interacts with StDIM/DWF1, an enzyme involved in plant sterols biosynthesis. Additionally, the analysis of the expression pattern of PStSN1::GUS in potato showed that Snakin-1 is present mainly in young tissues associated with active growth and cell division zones. Our comprehensive analysis of Snakin-1 silenced lines demonstrated for the first time in potato that Snakin-1 plays a role in redox balance and participates in a complex crosstalk among different hormones.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Hojas de la Planta , Proteínas de Plantas , Plantas Modificadas Genéticamente , Solanum tuberosum , Fitosteroles/biosíntesis , Fitosteroles/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
9.
10.
PLoS One ; 12(12): e0189859, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29261806

RESUMEN

Sclerotinia Head Rot (SHR), a disease caused by Sclerotinia sclerotiorum, is one of the most limiting factors in sunflower production. In this study, we identified genomic loci associated with resistance to SHR to support the development of assisted breeding strategies. We genotyped 114 Recombinant Inbred Lines (RILs) along with their parental lines (PAC2 -partially resistant-and RHA266 -susceptible-) by using a 384 single nucleotide polymorphism (SNP) Illumina Oligo Pool Assay to saturate a sunflower genetic map. Subsequently, we tested these lines for SHR resistance using assisted inoculations with S. sclerotiorum ascospores. We also conducted a randomized complete-block assays with three replicates to visually score disease incidence (DI), disease severity (DS), disease intensity (DInt) and incubation period (IP) through four field trials (2010-2014). We finally assessed main effect quantitative trait loci (M-QTLs) and epistatic QTLs (E-QTLs) by composite interval mapping (CIM) and mixed-model-based composite interval mapping (MCIM), respectively. As a result of this study, the improved map incorporates 61 new SNPs over candidate genes. We detected a broad range of narrow sense heritability (h2) values (1.86-59.9%) as well as 36 M-QTLs and 13 E-QTLs along 14 linkage groups (LGs). On LG1, LG10, and LG15, we repeatedly detected QTLs across field trials; which emphasizes their putative effectiveness against SHR. In all selected variables, most of the identified QTLs showed high determination coefficients, associated with moderate to high heritability values. Using markers shared with previous Sclerotinia resistance studies, we compared the QTL locations in LG1, LG2, LG8, LG10, LG11, LG15 and LG16. This study constitutes the largest report of QTLs for SHR resistance in sunflower. Further studies focusing on the regions in LG1, LG10, and LG15 harboring the detected QTLs are necessary to identify causal alleles and contribute to unraveling the complex genetic basis governing the resistance.


Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Epistasis Genética , Helianthus/genética , Helianthus/microbiología , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos , Genotipo , Endogamia , Fenotipo , Polimorfismo de Nucleótido Simple/genética
11.
Plant Signal Behav ; 7(8): 1004-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22836500

RESUMEN

Snakin/GASA proteins are widely distributed among plant species. They are expressed in different plant organs with high tissue and temporal specificity, and their subcellular localization varies among the different members. Interestingly, all of them maintain 12 cysteines of the C-terminus in highly conserved positions of the aminoacid sequences that are essential for their biochemical activity and probably responsible for their protein structure. Despite their common features, their functions are not completely elucidated and little is known about their mode of action. This review focuses on the current knowledge about this intriguing family of peptides and advances comprising gene regulation analyses, expression pattern studies and phenotypic characterization of mutants and transgenic plants. Furthermore, we discuss the roles of Snakin/GASA proteins in several aspects of plant development, plant responses to biotic or abiotic stress and their participation in hormone crosstalk and redox homeostasis.


Asunto(s)
Homeostasis , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis/genética , Oxidación-Reducción , Desarrollo de la Planta/genética , Proteínas de Plantas/genética
12.
Electron. j. biotechnol ; 13(6): 7-8, Nov. 2010. ilus, tab
Artículo en Inglés | LILACS | ID: lil-591911

RESUMEN

In order to saturate a sunflower genetic map and facilitate marker-assisted selection (MAS) breeding for stress response, it is necessary to enhance map saturation with molecular markers localized in linkage groups associated to genomic regions involved in these traits. This work describes the identification and characterization of 1,134 simple sequence repeat (SSR) containing expressed sequence tags (EST) from unigenes available databases. Twelve of these functional markers as well as 41 public SSR markers were successfully localized in linkage groups, thus contributing to the saturation of specific regions on a reference genetic-linkage-map derived from recombinant inbred lines (RIL) mapping population from the cross between PAC2 x RHA266 lines. The enriched map includes 547 markers (231 SSR, 9 EST-SSR, 3 insertions/deletions (InDel) and 304 amplified fragment length polymorphisms (AFLP) distributed in 17 linkage groups (LG), spanning genetic size to 1,942.3 cM and improving its mean density to 3.6 cM per locus. As consequence, no gaps longer than 13.2 cM remain uncovered throughout the entire map, which increases the feasibility of detecting genes or traits of agronomic importance in sunflower.


Asunto(s)
Mapeo Cromosómico , Helianthus/genética , ADN de Plantas/genética , Agricultura , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Cruzamiento , Ligamiento Genético , Marcadores Genéticos , Mutación INDEL , Repeticiones de Microsatélite , Reacción en Cadena de la Polimerasa , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA