Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Emerg Infect Dis ; 26(9): 2087-2096, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32818393

RESUMEN

In Bangladesh, live bird market environments are frequently contaminated with avian influenza viruses. Shop-level biosecurity practices might increase risk for environmental contamination. We sought to determine which shop-level biosecurity practices were associated with environmental contamination. We surveyed 800 poultry shops to describe biosecurity practices and collect environmental samples. Samples from 205 (26%) shops were positive for influenza A viral RNA, 108 (14%) for H9, and 60 (8%) for H5. Shops that slaughtered poultry, kept poultry overnight, remained open without rest days, had uneven muddy floors, held poultry on the floor, and housed sick and healthy poultry together were more frequently positive for influenza A viruses. Reported monthly cleaning seemed protective, but disinfection practices were not otherwise associated with influenza A virus detection. Slaughtering, keeping poultry overnight, weekly rest days, infrastructure, and disinfection practices could be targets for interventions to reduce environmental contamination.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Bangladesh/epidemiología , Higiene , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/prevención & control , Aves de Corral
2.
Pathogens ; 9(11)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207803

RESUMEN

Ducks are a natural reservoir of influenza A viruses (IAVs) and can act as a reassortment vessel. Wetlands, such as Hakaluki and Tanguar haor in Bangladesh, have unique ecosystems including domestic duck (Anas platyrhynchos domesticus) rearing, especially household and free-range ducks. A cross-sectional study was, therefore, conducted to explore avian influenza status and its distribution and risk factors in the wetland areas. During the three consecutive winters of 2015-2017, specifically in December of these years, we collected a total of 947 samples including blood, oropharyngeal and cloacal swabs from domestic ducks (free-range duck (n = 312 samples) and household ducks (n = 635 samples) in wetlands. We screened serum samples using a nucleoprotein competitive enzyme-linked immunosorbent assay (c-ELISA) to estimate seroprevalence of IAV antibodies and swab samples by real-time reverse transcriptase polymerase chain reaction (rRT-PCR) to detect IA viral M gene. Eleven (11) M gene positive samples were subjected to sequencing and phylogenetic analysis. Serological and viral prevalence rates of IAVs were 63.8% (95% CI: 60.6-66.8) and 10.7% (8.8-12.8), respectively. Serological and viral RNA prevalence rates were 51.8% (95% CI: 47.2-56.4) and 10.2% (7.6-13.3) in Hakaluki haor, 75.6% (71.5-79.4) and 11.1% (8.5-14.3) in Tanguar haor, 66.3% (62.5-69.9) and 11.2% (8.8-13.9) in household ducks and 58.7% (52.9-64.2) and 9.6% (6.5-13.4) in free-range ducks, respectively. The risk factors identified for higher odds of AI seropositive ducks were location (OR = 2.9, 95% CI: 2.2-3.8, p < 0.001; Tanguar haor vs. Hakaluki haor), duck-rearing system (OR = 1.4, 1.1-1.8, household vs. free-range), farmer's education status (OR = 1.5, 1.2-2.0, p < 0.05 illiterate vs. literate) and contact type (OR = 3.0, 2.1-4.3, p < 0.001; contact with chicken vs. no contact with chicken). The risk factors identified for higher odds of AI RNA positive ducks were farmer's education status (OR = 1.5, 1.0-2.3, p < 0.05 for illiterate vs literate), contact type (OR = 2.7, 1.7-4.2, p < 0.001; ducks having contact with chicken vs. ducks having contact with waterfowl). The phylogenetic analysis of 11 partial M gene sequences suggested that the M gene sequences detected in free-range duck were very similar to each other and were closely related to the M gene sequences of previously reported highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) subtypes in waterfowl in Bangladesh and Southeast Asian countries. Results of the current study will help provide significant information for future surveillance programs and model IAV infection to predict the spread of the viruses among migratory waterfowl, free-range ducks and domestic poultry in Bangladesh.

3.
Vet Sci ; 7(2)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492967

RESUMEN

Highly pathogenic avian influenza H5 viruses have pandemic potential, cause significant economic losses and are of veterinary and public health concerns. This study aimed to investigate the distribution and diversity of hemagglutinin (HA) subtypes of avian influenza virus (AIV) in poultry and wild birds in Bangladesh. We conducted an avian influenza sero-surveillance in wild and domestic birds in wetlands of Chattogram and Sylhet in the winter seasons 2012-2014. We tested serum samples using a competitive enzyme-linked immunosorbent assay (c-ELISA), and randomly selected positive serum samples (170 of 942) were tested using hemagglutination inhibition (HI) to detect antibodies against the 16 different HA sero-subtypes. All AIV sero-subtypes except H7, H11, H14 and H15 were identified in the present study, with H5 and H9 dominating over other subtypes, regardless of the bird species. The diversity of HA sero-subtypes within groups ranged from 3 (in household chickens) to 10 (in migratory birds). The prevalence of the H5 sero-subtype was 76.3% (29/38) in nomadic ducks, 71.4% (5/7) in household chicken, 66.7% (24/36) in resident wild birds, 65.9% (27/41) in migratory birds and 61.7% (29/47) in household ducks. Moreover, the H9 sero-subtype was common in migratory birds (56%; 23/41), followed by 38.3% (18/47) in household ducks, 36.8% (14/38) in nomadic ducks, 30.6% (11/66) in resident wild birds and 28.5% (2/7) in household chickens. H1, H4 and H6 sero-subtypes were the most common sero-subtypes (80%; 8/10, 70%; 7/10 and 70%; 7/10, respectively) in migratory birds in 2012, H9 in resident wild birds (83.3%; 5/6) and H2 in nomadic ducks (73.9%; 17/23) in 2013, and the H5 sero-subtype in all types of birds (50% to 100%) in 2014. The present study demonstrates that a high diversity of HA subtypes circulated in diverse bird species in Bangladesh, and this broad range of AIV hosts may increase the probability of AIVs' reassortment and may enhance the emergence of novel AIV strains. A continued surveillance for AIV at targeted domestic-wild bird interfaces is recommended to understand the ecology and evolution of AIVs.

4.
Vet Sci ; 7(3)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882787

RESUMEN

Avian influenza (AI) is endemic and frequently causes seasonal outbreaks in winter in Bangladesh due to high pathogenic avian influenza (HPAI) H5N1 and low pathogenic avian influenza (LPAI) H9N2. Among avian influenza A viruses (AIV), H5, H7, and H9 subtypes have the most zoonotic potential. Captive birds in zoos and safari parks are used for educational, recreational, breeding, and conservational purposes in Bangladesh. To screen for AIV in captive birds to assess potential public health threats, we conducted a cross-sectional study in two safari parks and one zoo in Bangladesh for four months, from November to December 2013 and from January to February 2014. We collected blood samples, oropharyngeal, and cloacal swabs from 228 birds. We tested serum samples for AIV antibodies using competitive enzyme-linked immunosorbent assay (c-ELISA) and AIV sero-subtype H5, H7, and H9 using hemagglutination inhibition (HI) test. Swab samples were tested for the presence of avian influenza viral RNA using real-time reverse transcription-polymerase chain reaction (rRT-PCR). Across all the samples, AIV antibody prevalence was 9.7% (95% CI: 6.1-14.2, n = 228) and AIV HA subtype H5, H7 and H9 sero-prevalence was 0% (95% CI: 0-1.6, n = 228), 0% (95% CI: 0-1.6, n = 228) and 6.6% (95% CI: 3.72-10.6, n = 228), respectively. No AI viral RNA (M-gene) was detected in any swab sample (0%, 95% CI: 0-1.6, n = 228). Birds in the Safari park at Cox's Bazar had a higher prevalence in both AIV antibody prevalence (13.5%) and AIV H9 sero-prevalence (9.6%) than any of the other sites, although the difference was not statistically significant. Among eight species of birds, Emu (Dromaius novaehollandiae) had the highest sero-positivity for both AIV antibody prevalence (26.1%) and AIV H9 prevalence (17.4%) followed by Golden pheasant (Chrysolophus pictus) with AIV antibody prevalence of 18.2% and AIV H9 prevalence of 11.4%. Our results highlight the presence of AI antibodies indicating low pathogenic AIV mingling in captive birds in zoos and safari parks in Bangladesh. Continuous programmed surveillance is therefore recommended to help better understand the diversity of AIVs and provide a clear picture of AI in captive wild birds, enabling interventions to reduce the risk of AIV transmission to humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA