Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 155(2): 296-307, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120131

RESUMEN

Robust dendrite morphogenesis is a critical step in the development of reproducible neural circuits. However, little is known about the extracellular cues that pattern complex dendrite morphologies. In the model nematode Caenorhabditis elegans, the sensory neuron PVD establishes stereotypical, highly branched dendrite morphology. Here, we report the identification of a tripartite ligand-receptor complex of membrane adhesion molecules that is both necessary and sufficient to instruct spatially restricted growth and branching of PVD dendrites. The ligand complex SAX-7/L1CAM and MNR-1 function at defined locations in the surrounding hypodermal tissue, whereas DMA-1 acts as the cognate receptor on PVD. Mutations in this complex lead to dramatic defects in the formation, stabilization, and organization of the dendritic arbor. Ectopic expression of SAX-7 and MNR-1 generates a predictable, unnaturally patterned dendritic tree in a DMA-1-dependent manner. Both in vivo and in vitro experiments indicate that all three molecules are needed for interaction.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Dendritas/metabolismo , Proteínas de la Membrana/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fibronectinas/metabolismo , Proteínas de la Membrana/genética , Moléculas de Adhesión de Célula Nerviosa/genética , Filogenia
2.
Cell ; 149(2): 322-33, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22500799

RESUMEN

Many cells undergo symmetry-breaking polarization toward a randomly oriented "front" in the absence of spatial cues. In budding yeast, such polarization involves a positive feedback loop that enables amplification of stochastically arising clusters of polarity factors. Previous mathematical modeling suggested that, if more than one cluster were amplified, the clusters would compete for limiting resources and the largest would "win," explaining why yeast cells always make one and only one bud. Here, using imaging with improved spatiotemporal resolution, we show the transient coexistence of multiple clusters during polarity establishment, as predicted by the model. Unexpectedly, we also find that initial polarity factor clustering is oscillatory, revealing the presence of a negative feedback loop that disperses the factors. Mathematical modeling predicts that negative feedback would confer robustness to the polarity circuit and make the kinetics of competition between polarity factor clusters relatively insensitive to polarity factor concentration. These predictions are confirmed experimentally.


Asunto(s)
Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Polaridad Celular , Retroalimentación Fisiológica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo
3.
Cell ; 139(4): 731-43, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19914166

RESUMEN

For budding yeast to ensure formation of only one bud, cells must polarize toward one, and only one, site. Polarity establishment involves the Rho family GTPase Cdc42, which concentrates at polarization sites via a positive feedback loop. To assess whether singularity is linked to the specific Cdc42 feedback loop, we disabled the yeast cell's endogenous amplification mechanism and synthetically rewired the cells to employ a different positive feedback loop. Rewired cells violated singularity, occasionally making two buds. Even cells that made only one bud sometimes initiated two clusters of Cdc42, but then one cluster became dominant. Mathematical modeling indicated that, given sufficient time, competition between clusters would promote singularity. In rewired cells, competition occurred slowly and sometimes failed to develop a single "winning" cluster before budding. Slowing competition in normal cells also allowed occasional formation of two buds, suggesting that singularity is enforced by rapid competition between Cdc42 clusters.


Asunto(s)
Saccharomyces cerevisiae/citología , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Retroalimentación Fisiológica , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo
4.
PLoS Genet ; 11(12): e1005695, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26633194

RESUMEN

The construction of a large dendritic arbor requires robust growth and the precise delivery of membrane and protein cargoes to specific subcellular regions of the developing dendrite. How the microtubule-based vesicular trafficking and sorting systems are regulated to distribute these dendritic development factors throughout the dendrite is not well understood. Here we identify the small GTPase RAB-10 and the exocyst complex as critical regulators of dendrite morphogenesis and patterning in the C. elegans sensory neuron PVD. In rab-10 mutants, PVD dendritic branches are reduced in the posterior region of the cell but are excessive in the distal anterior region of the cell. We also demonstrate that the dendritic branch distribution within PVD depends on the balance between the molecular motors kinesin-1/UNC-116 and dynein, and we propose that RAB-10 regulates dendrite morphology by balancing the activity of these motors to appropriately distribute branching factors, including the transmembrane receptor DMA-1.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Dendritas/genética , Cinesinas/genética , Proteínas de la Membrana/genética , Neurogénesis/genética , Proteínas de Unión al GTP rab/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/biosíntesis , Dendritas/metabolismo , Dineínas/genética , Dineínas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cinesinas/biosíntesis , Cinesinas/metabolismo , Proteínas de la Membrana/biosíntesis , Transporte de Proteínas/genética , Proteínas de Unión al GTP rab/metabolismo
5.
Curr Biol ; 18(22): 1719-26, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19013066

RESUMEN

BACKGROUND: In 1952, Alan Turing suggested that spatial patterns could arise from homogeneous starting conditions by feedback amplification of stochastic fluctuations. One example of such self-organization, called symmetry breaking, involves spontaneous cell polarization in the absence of spatial cues. The conserved GTPase Cdc42p is essential for both guided and spontaneous polarization, and in budding yeast cells Cdc42p concentrates at a single site (the presumptive bud site) at the cortex. Cdc42p concentrates at a random cortical site during symmetry breaking in a manner that requires the scaffold protein Bem1p. The mechanism whereby Bem1p promotes this polarization was unknown. RESULTS: Here we show that Bem1p promotes symmetry breaking by assembling a complex in which both a Cdc42p-directed guanine nucleotide exchange factor (GEF) and a Cdc42p effector p21-activated kinase (PAK) associate with Bem1p. Analysis of Bem1p mutants indicates that both GEF and PAK must bind to the same molecule of Bem1p, and a protein fusion linking the yeast GEF and PAK bypasses the need for Bem1p. Although mammalian cells lack a Bem1p ortholog, they contain more complex multidomain GEFs that in some cases can directly interact with PAKs, and we show that yeast containing an artificial GEF with similar architecture can break symmetry even without Bem1p. CONCLUSIONS: Yeast symmetry-breaking polarization involves a GEF-PAK complex that binds GTP-Cdc42p via the PAK and promotes local Cdc42p GTP-loading via the GEF. By generating fresh GTP-Cdc42p near pre-existing GTP-Cdc42p, the complex amplifies clusters of GTP-Cdc42p at the cortex. Our findings provide mechanistic insight into an evolutionarily conserved pattern-forming positive-feedback pathway.


Asunto(s)
Polaridad Celular , Factores de Intercambio de Guanina Nucleótido/fisiología , Saccharomyces cerevisiae/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/fisiología , Quinasas p21 Activadas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Modelos Biológicos , Mutación , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/química , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo , Quinasas p21 Activadas/química , Quinasas p21 Activadas/metabolismo
6.
Biol Chem ; 392(8-9): 689-97, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21736496

RESUMEN

Although the septin ring and collar in budding yeast were described over 20 years ago, there is still controversy regarding the organization of septin filaments within these structures and about the way in which the ring first forms and about how it converts into a collar at the mother-bud neck. Here we present quantitative analyses of the recruitment of fluorescently-tagged septins to the ring and collar through the cell cycle. Septin ring assembly began several minutes after polarity establishment and this interval was longer in daughter than in mother cells, suggesting asymmetric inheritance of septin regulators. Septins formed an initial faint and irregular ring, which became more regular as septins were recruited at a constant rate. This steady rate of septin recruitment continued for several minutes after the ring converted to a collar at bud emergence. We did not detect a stepwise change in septin fluorescence during the ring-to-collar transition. After collar formation, septins continued to accumulate at the bud neck, though at a reduced rate, until the onset of cytokinesis when the amount of neck-localized septins rapidly decreased. Implications for the mechanism of septin ring assembly are discussed.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Septinas/genética
7.
Mol Biol Cell ; 16(3): 1296-304, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15616194

RESUMEN

In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399-416, 1997). Surprisingly, we now report that unlike complete actin depolymerization, partial actin depolymerization leads to the dispersal of Cdc42p from the polarization site in unbudded cells. We provide evidence that dispersal is due to endocytosis associated with cortical actin patches and that actin cables are required to counteract the dispersal and maintain Cdc42p polarity. Thus, although Cdc42p is initially polarized in an actin-independent manner, maintaining that polarity may involve a reinforcing feedback between Cdc42p and polarized actin cables to counteract the dispersing effects of actin-dependent endocytosis. In addition, we report that once a bud has formed, polarized Cdc42p becomes more resistant to dispersal, revealing an unexpected difference between unbudded and budded cells in the organization of the polarization site.


Asunto(s)
Actinas/química , Actinas/fisiología , Saccharomyces cerevisiae/fisiología , Proteína de Unión al GTP cdc42/química , Sitios de Unión , Citoesqueleto/metabolismo , Endocitosis , Genotipo , Microscopía Fluorescente , Modelos Biológicos , Mutación , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Temperatura , Factores de Tiempo
8.
Elife ; 4: e06963, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-26052671

RESUMEN

Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Dendritas/fisiología , Morfogénesis , Biosíntesis de Proteínas , Respuesta de Proteína Desplegada , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas de la Membrana/metabolismo
9.
Genetics ; 190(1): 51-77, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22219508

RESUMEN

Studies of the processes leading to the construction of a bud and its separation from the mother cell in Saccharomyces cerevisiae have provided foundational paradigms for the mechanisms of polarity establishment, cytoskeletal organization, and cytokinesis. Here we review our current understanding of how these morphogenetic events occur and how they are controlled by the cell-cycle-regulatory cyclin-CDK system. In addition, defects in morphogenesis provide signals that feed back on the cyclin-CDK system, and we review what is known regarding regulation of cell-cycle progression in response to such defects, primarily acting through the kinase Swe1p. The bidirectional communication between morphogenesis and the cell cycle is crucial for successful proliferation, and its study has illuminated many elegant and often unexpected regulatory mechanisms. Despite considerable progress, however, many of the most puzzling mysteries in this field remain to be resolved.


Asunto(s)
Ciclo Celular/fisiología , Morfogénesis/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Citocinesis/fisiología , Percepción de Quorum
10.
Mol Biol Cell ; 23(19): 3814-26, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22918946

RESUMEN

Actin filaments are dynamically reorganized to accommodate ever-changing cellular needs for intracellular transport, morphogenesis, and migration. Formins, a major family of actin nucleators, are believed to function as direct effectors of Rho GTPases, such as the polarity regulator Cdc42p. However, the presence of extensive redundancy has made it difficult to assess the in vivo significance of the low-affinity Rho GTPase-formin interaction and specifically whether Cdc42p polarizes the actin cytoskeleton via direct formin binding. Here we exploit a synthetically rewired budding yeast strain to eliminate the redundancy, making regulation of the formin Bni1p by Cdc42p essential for viability. Surprisingly, we find that direct Cdc42p-Bni1p interaction is dispensable for Bni1p regulation. Alternative paths linking Cdc42p and Bni1p via "polarisome" components Spa2p and Bud6p are also collectively dispensable. We identify a novel regulatory input to Bni1p acting through the Cdc42p effector, Gic2p. This pathway is sufficient to localize Bni1p to the sites of Cdc42p action and promotes a polarized actin organization in both rewired and wild-type contexts. We suggest that an indirect mechanism linking Rho GTPases and formins via Rho effectors may provide finer spatiotemporal control for the formin-nucleated actin cytoskeleton.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteína de Unión al GTP cdc42/fisiología , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Viabilidad Microbiana , Profilinas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/citología , Esporas Fúngicas/enzimología , Esporas Fúngicas/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
11.
Neuron ; 71(3): 381-2, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21835334

RESUMEN

Axon-dendrite polarity is likely instructed by extrinsic cues in the developing nervous system, though the mechanisms governing this process remain to be fully elucidated. In this issue of Neuron, Shelly et al. show that the axon guidance cue Semaphorin 3A can promote dendrite growth by inhibiting axon specification.

12.
Curr Biol ; 21(3): 184-94, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21277209

RESUMEN

BACKGROUND: Polarization in yeast has been proposed to involve a positive feedback loop whereby the polarity regulator Cdc42p orients actin cables, which deliver vesicles carrying Cdc42p to the polarization site. Previous mathematical models treating Cdc42p traffic as a membrane-free flux suggested that directed traffic would polarize Cdc42p, but it remained unclear whether Cdc42p would become polarized without the membrane-free simplifying assumption. RESULTS: We present mathematical models that explicitly consider stochastic vesicle traffic via exocytosis and endocytosis, providing several new insights. Our findings suggest that endocytic cargo influences the timing of vesicle internalization in yeast. Moreover, our models provide quantitative support for the view that integral membrane cargo proteins would become polarized by directed vesicle traffic given the experimentally determined rates of vesicle traffic and diffusion. However, such traffic cannot effectively polarize the more rapidly diffusing Cdc42p in the model without making additional assumptions that seem implausible and lack experimental support. CONCLUSIONS: Our findings suggest that actin-directed vesicle traffic would perturb, rather than reinforce, polarization in yeast.


Asunto(s)
Polaridad Celular , Modelos Biológicos , Saccharomyces cerevisiae/citología , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/fisiología , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestructura , Endocitosis , Exocitosis , Retroalimentación Fisiológica , Transporte de Proteínas , Proteínas SNARE/metabolismo , Septinas/análisis , Septinas/metabolismo , Septinas/fisiología , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/genética , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo
13.
J Cell Biol ; 179(7): 1375-84, 2007 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-18166650

RESUMEN

Cells of the budding yeast Saccharomyces cerevisiae are born carrying localized transmembrane landmark proteins that guide the subsequent establishment of a polarity axis and hence polarized growth to form a bud in the next cell cycle. In haploid cells, the relevant landmark proteins are concentrated at the site of the preceding cell division, to which they recruit Cdc24, the guanine nucleotide exchange factor for the conserved polarity regulator Cdc42. However, instead of polarizing at the division site, the new polarity axis is directed next to but not overlapping that site. Here, we show that the Cdc42 guanosine triphosphatase-activating protein (GAP) Rga1 establishes an exclusion zone at the division site that blocks subsequent polarization within that site. In the absence of localized Rga1 GAP activity, new buds do in fact form within the old division site. Thus, Cdc42 activators and GAPs establish concentric zones of action such that polarization is directed to occur adjacent to but not within the previous cell division site.


Asunto(s)
División Celular/fisiología , Polaridad Celular/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo , Proteínas Activadoras de GTPasa/genética , Regulación Fúngica de la Expresión Génica/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA