Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 22(8): 1525-38, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23307925

RESUMEN

No effective treatment exists for patients with X-linked myotubular myopathy (XLMTM), a fatal congenital muscle disease caused by deficiency of the lipid phosphatase, myotubularin. The Mtm1δ4 and Mtm1 p.R69C mice model severely and moderately symptomatic XLMTM, respectively, due to differences in the degree of myotubularin deficiency. Contractile function of intact extensor digitorum longus (EDL) and soleus muscles from Mtm1δ4 mice, which produce no myotubularin, is markedly impaired. Contractile forces generated by chemically skinned single fiber preparations from Mtm1δ4 muscle were largely preserved, indicating that weakness was largely due to impaired excitation contraction coupling. Mtm1 p.R69C mice, which produce small amounts of myotubularin, showed impaired contractile function only in EDL muscles. Short-term replacement of myotubularin with a prototypical targeted protein replacement agent (3E10Fv-MTM1) in Mtm1δ4 mice improved contractile function and muscle pathology. These promising findings suggest that even low levels of myotubularin protein replacement can improve the muscle weakness and reverse the pathology that characterizes XLMTM.


Asunto(s)
Terapia de Reemplazo Enzimático , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/terapia , Proteínas Tirosina Fosfatasas no Receptoras/genética , Animales , Modelos Animales de Enfermedad , Fatiga/metabolismo , Fatiga/fisiopatología , Femenino , Humanos , Ratones , Debilidad Muscular/genética , Debilidad Muscular/terapia , Músculo Esquelético/fisiopatología , Músculos/enzimología , Músculos/metabolismo , Músculos/patología , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/genética , Proteínas Tirosina Fosfatasas no Receptoras/biosíntesis , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia
2.
Am J Pathol ; 181(3): 961-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22841819

RESUMEN

X-linked myotubular myopathy is a severe congenital myopathy caused by deficiency of the lipid phosphatase, myotubularin. Recent studies of human tissue and animal models have discovered structural and physiological abnormalities in myotubularin-deficient muscle, but the impact of myotubularin deficiency on myogenic stem cells within muscles is unclear. In the present study, we evaluated the viability, proliferative capacity, and in vivo engraftment of myogenic cells obtained from severely symptomatic (Mtm1δ4) myotubularin-deficient mice. Mtm1δ4 muscle contains fewer myogenic cells than wild-type (WT) littermates, and the number of myogenic cells decreases with age. The behavior of Mtm1δ4 myoblasts is also abnormal, because they engraft poorly into C57BL/6/Rag1null/mdx5cv mice and display decreased proliferation and increased apoptosis compared with WT myoblasts. Evaluation of Mtm1δ4 animals at 21 and 42 days of life detected fewer satellite cells in Mtm1δ4 muscle compared with WT littermates, and the decrease in satellite cells correlated with progression of disease. In addition, analysis of WT and Mtm1δ4 regeneration after injury detected similar abnormalities of satellite cell function, with fewer satellite cells, fewer dividing cells, and increased apoptotic cells in Mtm1δ4 muscle. These studies demonstrate specific abnormalities in myogenic cell number and behavior that may relate to the progression of disease in myotubularin deficiency, and may also be used to develop in vitro assays by which novel treatment strategies can be assessed.


Asunto(s)
Apoptosis , Mioblastos/patología , Mioblastos/trasplante , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Animales , Recuento de Células , Proliferación Celular , Supervivencia Celular , Progresión de la Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Mioblastos/metabolismo , Factor de Transcripción PAX7/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología
3.
J Cell Biol ; 167(6): 1137-46, 2004 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-15611336

RESUMEN

Cell polarity and cell proliferation can be coupled in animal tissues, but how they are coupled is not understood. In Drosophila imaginal discs, loss of the neoplastic tumor suppressor gene scribble (scrib), which encodes a multidomain scaffolding protein, disrupts epithelial organization and also causes unchecked proliferation. Using an allelic series of mutations along with rescuing transgenes, we have identified domain requirements for polarity, proliferation control, and other Scrib functions. The leucine-rich repeats (LRR) tether Scrib to the plasma membrane, are both necessary and sufficient to organize a polarized epithelial monolayer, and are required for all proliferation control. The PDZ domains, which recruit the LRR to the junctional complex, are dispensable for overall epithelial organization. PDZ domain absence leads to mild polarity defects accompanied by moderate overproliferation, but the PDZ domains alone are insufficient to provide any Scrib function in mutant discs. We suggest a model in which Scrib, via the activity of the LRR, governs proliferation primarily by regulating apicobasal polarity.


Asunto(s)
Proteínas Portadoras/fisiología , Polaridad Celular/fisiología , Proliferación Celular , Proteínas de Drosophila/fisiología , Drosophila/genética , Genes Supresores de Tumor/fisiología , Proteínas de la Membrana/fisiología , Alelos , Animales , Proteínas Portadoras/clasificación , Drosophila/citología , Proteínas de Drosophila/genética , Epitelio/metabolismo , Proteínas de la Membrana/genética , Mutación
4.
Cytoskeleton (Hoboken) ; 75(5): 213-228, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29518289

RESUMEN

The α-actinin proteins are a highly conserved family of actin crosslinkers that mediate interactions between several cytoskeletal and sarcomeric proteins. Nonsarcomeric α-actinin-1 and α-actinin-4 crosslink actin filaments in the cytoskeleton, while sarcomeric α-actinin-2 and α-actinin-3 serve a crucial role in anchoring actin filaments to the muscle Z-line. To assess the difference in turnover dynamics and structure/function properties between the α-actinin isoforms at the sarcomeric Z-line, we used Fluorescence Recovery After Photobleaching (FRAP) in primary myofiber cultures. We found that the recovery kinetics of these proteins followed three distinct patterns: α-actinin-2/α-actinin-3 had the slowest turn over, α-actinin-1 recovered to an intermediate degree, and α-actinin-4 had the fastest recovery. Interestingly, the isoforms' patterns of recovery were reversed at adhesion plaques in fibroblasts. This disparity suggests that the different α-actinin isoforms have unique association kinetics in myofibers and that nonmuscle isoform interactions are more dynamic at the sarcomeric Z-line. Protein domain-specific investigations using α-actinin-2/4 chimeric proteins showed that differential dynamics between sarcomeric and nonmuscle isoforms are regulated by cooperative interactions between the N-terminal actin-binding domain, the spectrin-like linker region and the C-terminal calmodulin-like EF hand domain. Together, these findings demonstrate that α-actinin isoforms are unique in binding dynamics at the Z-line and suggest differentially evolved interactive and Z-line association capabilities of each functional domain.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinina/metabolismo , Músculo Esquelético/metabolismo , Sarcómeros/metabolismo , Animales , Ratones , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA