Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Biol Chem ; 300(7): 107413, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38810698

RESUMEN

Ataxin-2 (Atx2) is a polyglutamine (polyQ) tract-containing RNA-binding protein, while its polyQ expansion may cause protein aggregation that is implicated in the pathogenesis of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2). However, the molecular mechanism underlying how Atx2 aggregation contributes to the proteinopathies remains elusive. Here, we investigated the influence of Atx2 aggregation on the assembly and functionality of cellular processing bodies (P-bodies) by using biochemical and fluorescence imaging approaches. We have revealed that polyQ-expanded (PQE) Atx2 sequesters the DEAD-box RNA helicase (DDX6), an essential component of P-bodies, into aggregates or puncta via some RNA sequences. The N-terminal like-Sm (LSm) domain of Atx2 (residues 82-184) and the C-terminal helicase domain of DDX6 are responsible for the interaction and specific sequestration. Moreover, sequestration of DDX6 may aggravate pre-mRNA mis-splicing, and interfere with the assembly of cellular P-bodies, releasing the endoribonuclease MARF1 that promotes mRNA decay and translational repression. Rescuing the DDX6 protein level can recover the assembly and functionality of P-bodies, preventing targeted mRNA from degradation. This study provides a line of evidence for sequestration of the P-body components and impairment of the P-body homeostasis in dysregulating RNA metabolism, which is implicated in the disease pathologies and a potential therapeutic target.

2.
J Biol Chem ; 299(8): 105019, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422193

RESUMEN

Poly(A)-binding protein nuclear 1 (PABPN1) is an RNA-binding protein localized in nuclear speckles, while its alanine (Ala)-expanded variants accumulate as intranuclear aggregates in oculopharyngeal muscular dystrophy. The factors that drive PABPN1 aggregation and its cellular consequences remain largely unknown. Here, we investigated the roles of Ala stretch and poly(A) RNA in the phase transition of PABPN1 using biochemical and molecular cell biology methods. We have revealed that the Ala stretch controls its mobility in nuclear speckles, and Ala expansion leads to aggregation from the dynamic speckles. Poly(A) nucleotide is essential to the early-stage condensation that thereby facilitates speckle formation and transition to solid-like aggregates. Moreover, the PABPN1 aggregates can sequester CFIm25, a component of the pre-mRNA 3'-UTR processing complex, in an mRNA-dependent manner and consequently impair the function of CFIm25 in alternative polyadenylation. In conclusion, our study elucidates a molecular mechanism underlying PABPN1 aggregation and sequestration, which will be beneficial for understanding PABPN1 proteinopathy.


Asunto(s)
Distrofia Muscular Oculofaríngea , Poliadenilación , Humanos , Alanina/metabolismo , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , ARN/metabolismo
3.
J Cell Sci ; 135(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35142363

RESUMEN

TDP-43 (also known as TARDBP) is a nuclear splicing factor functioning in pre-mRNA processing. Its C-terminal 35-kDa fragment (TDP-35) forms inclusions or aggregates in cytoplasm, and sequesters full-length TDP-43 into the inclusions through binding with RNA. We extended the research to investigate whether TDP-35 inclusions sequester other RNA-binding proteins (RBPs) and how RNA-binding specificity has a role in this sequestration process. We have characterized T-cell restricted intracellular antigen-1 (TIA1) and other RBPs that can be sequestered into the TDP-35 inclusions through specific RNA binding, and found that this sequestration leads to the dysfunction of TIA1 in maturation of target pre-mRNA. Moreover, we directly visualized the dynamic sequestration of TDP-43 by the cytoplasmic TDP-35 inclusions by live-cell imaging. Our results demonstrate that TDP-35 sequesters some specific RBPs and this sequestration is assisted by binding with RNA in a sequence-specific manner. This study provides further evidence in supporting the hijacking hypothesis for RNA-assisted sequestration and will be beneficial to further understanding of the TDP-43 proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteinopatías TDP-43 , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , ARN/genética , ARN/metabolismo , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteinopatías TDP-43/metabolismo
4.
EMBO Rep ; 22(6): e51649, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33855783

RESUMEN

Pathological TDP-43 aggregation is characteristic of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP); however, how TDP-43 aggregation and function are regulated remain poorly understood. Here, we show that O-GlcNAc transferase OGT-mediated O-GlcNAcylation of TDP-43 suppresses ALS-associated proteinopathies and promotes TDP-43's splicing function. Biochemical and cell-based assays indicate that OGT's catalytic activity suppresses TDP-43 aggregation and hyperphosphorylation, whereas abolishment of TDP-43 O-GlcNAcylation impairs its RNA splicing activity. We further show that TDP-43 mutations in the O-GlcNAcylation sites improve locomotion defects of larvae and adult flies and extend adult life spans, following TDP-43 overexpression in Drosophila motor neurons. We finally demonstrate that O-GlcNAcylation of TDP-43 promotes proper splicing of many mRNAs, including STMN2, which is required for normal axonal outgrowth and regeneration. Our findings suggest that O-GlcNAcylation might be a target for the treatment of TDP-43-linked pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Empalme del ARN , ARN Mensajero/genética
5.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 736-748, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37171184

RESUMEN

Nine polyglutamine (polyQ) proteins have already been identified that are considered to be associated with the pathologies of neurodegenerative disorders called polyQ diseases, but whether these polyQ proteins mutually interact and synergize in proteinopathies remains to be elucidated. In this study, 4 polyQ-containing proteins, androgen receptor (AR), ataxin-7 (Atx7), huntingtin (Htt) and ataxin-3 (Atx3), are used as model molecules to investigate their heterologous coaggregation and consequent impact on cellular proteostasis. Our data indicate that the N-terminal fragment of polyQ-expanded (PQE) Atx7 or Htt can coaggregate with and sequester AR and Atx3 into insoluble aggregates or inclusions through their respective polyQ tracts. In vitro coprecipitation and NMR titration experiments suggest that this specific coaggregation depends on polyQ lengths and is probably mediated by polyQ-tract interactions. Luciferase reporter assay shows that these coaggregation and sequestration effects can deplete the cellular availability of AR and consequently impair its transactivation function. This study provides valid evidence supporting the viewpoint that coaggregation of polyQ proteins is mediated by polyQ-tract interactions and benefits our understanding of the molecular mechanism underlying the accumulation of different polyQ proteins in inclusions and their copathological causes of polyQ diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Proteostasis , Humanos , Péptidos/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo
6.
Biochem J ; 477(21): 4295-4312, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33094816

RESUMEN

Ubiquitin-specific protease 19 (USP19) is a member of the deubiquitinating (DUB) enzymes that catalyze removing the ubiquitin signals from target proteins. Our previous research has demonstrated that USP19 up-regulates the protein level and aggregation of polyQ-expanded huntingtin through the involvement of heat shock protein 90 (HSP90). Here, we present solution structures of the CS1, CS2 and UbL domains of USP19 and structural insights into their domain interactions. We found that the tandem CS domains fold back to interact with the C-terminal USP domain (USPD) intra-molecularly that leads to inhibition of the catalytic core of USP19, especially CS1 interacts with the embedded UbL domain and CS2 does with the CH2 catalytic core. Moreover, CS2 specifically interacts with the NBD domain of HSP90, which can activate the DUB enzyme. A mechanism of auto-inhibition of USP19 and activation by HSP90 is proposed, on which USP19 modulates the protein level of polyQ-expanded huntingtin in cells. This study provides structural and mechanistic insights into the modulation of protein level and aggregation by USP19 with the assistance of HSP90.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Humanos , Proteína Huntingtina/metabolismo , Péptidos/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
7.
J Am Chem Soc ; 142(7): 3412-3421, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32003979

RESUMEN

TDP-43 is a primary pathological hallmark protein of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, which may exist in the form of amyloid inclusions in the cells of patients. In addition to serving as a biomarker for these diseases, TDP-43 can also directly trigger neurodegeneration. We previously determined the amyloidogenic core region of TDP-43 (residues 311-360) and showed by solution NMR that this region includes two α-helices [(321-330) and (335-343)] in solution. We suggested that the helix-to-sheet structural transformation initiates TDP-43 aggregation. In the present study, X-ray diffraction shows that TDP-43 (311-360) aggregates adopt a cross-ß structure. Thioredoxin (Trx)-fused TDP-43 (311-360) can undergo liquid-liquid phase separation (LLPS) before fibrillation, suggesting that phase separation is an intermediate step before amyloid formation. Solid-state NMR (SSNMR), carried out to elucidate the structural changes of TDP-43 (311-360) at the atomic level, indicates five ß-strands of the amyloids formed, with the major two ß-strands contributed by the first helical region in the solution structure. The NMR evidence is also in support of the fibril having a parallel in-register conformation, implying a mechanism in which the helix-helix interactions in LLPS are converted into ß-strand parallel lateral association upon fibrillation. Our studies have assigned many key interresidue interactions that contribute to the stability of the fibril, including F316 with I318 and Q327 and W334 with A325, A326, A329, and S332. SSNMR with 1H detection reveals a unique close interaction between the indole Nε1-Hε1 of W334 and the side-chain carbonyl of Q343. This interaction could be a very important factor in initiating TDP-43 (311-360) folding/misfolding in LLPS.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Proteínas de Unión al ADN/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Proteínas Amiloidogénicas/química , Proteínas de Unión al ADN/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Transición de Fase , Conformación Proteica , Multimerización de Proteína
8.
FASEB J ; 32(6): 2923-2933, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401586

RESUMEN

The components of ubiquitin (Ub)-proteasome system, such as Ub, Ub adaptors, or proteasome subunits, are commonly accumulated with the aggregated proteins in inclusions, but how protein aggregates sequester Ub-related proteins remains elusive. Using N-terminal huntingtin (Htt-N552) and ataxin (Atx)-3 as model proteins, we investigated the molecular mechanism underlying sequestration of Ub adaptors by polyQ-expanded proteins. We found that polyQ-expanded Htt-N552 and Atx-3 sequester endogenous Ub adaptors, human RAD23 homolog B (hHR23B) and ubiquilin (UBQLN)-2, into inclusions. This sequestration effect is dependent on the UBA domains of Ub adaptors and the conjugated Ub of the aggregated proteins. Moreover, polyQ-expanded Htt-N552 and Atx-3 reduce the protein level of xeroderma pigmentosum group C (XPC) by sequestration of hHR23B, suggesting that this process may cut down the available quantity of hHR23B and thus affect its normal function in stabilizing XPC. Our findings demonstrate that polyQ-expanded proteins sequester Ub adaptors or other Ub-related proteins into aggregates or inclusions through ubiquitination of the pathogenic proteins. This study may also provide a common mechanism for the formation of Ub-positive inclusions in cells.-Yang, H., Yue, H.-W., He, W.-T., Hong, J.-Y., Jiang, L.-L., Hu, H.-Y. PolyQ-expanded huntingtin and ataxin-3 sequester ubiquitin adaptors hHR23B and UBQLN2 into aggregates via conjugated ubiquitin.


Asunto(s)
Ataxina-3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína Huntingtina/metabolismo , Péptidos/metabolismo , Proteínas Represoras/metabolismo , Ubiquitinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Ataxina-3/genética , Proteínas Relacionadas con la Autofagia , Proteínas de Ciclo Celular/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Proteína Huntingtina/genética , Péptidos/genética , Dominios Proteicos , Estabilidad Proteica , Proteínas Represoras/genética , Ubiquitinas/genética
9.
Biophys J ; 112(10): 2099-2108, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28538147

RESUMEN

Ubiquitin-specific protease 25 (Usp25) is a deubiquitinase that is involved in multiple biological processes. The N-terminal ubiquitin-binding region (UBR) of Usp25 contains one ubiquitin-associated domain, one small ubiquitin-like modifier (SUMO)-interacting motif and two ubiquitin-interacting motifs. Previous studies suggest that the covalent sumoylation in the UBR of Usp25 impairs its enzymatic activity. Here, we raise the hypothesis that non-covalent binding of SUMO, a prerequisite for efficient sumoylation, will impair Usp25's catalytic activity as well. To test our hypothesis and elucidate the underlying molecular mechanism, we investigated the structure and function of the Usp25 N-terminal UBR. The solution structure of Usp251-146 is obtained, and the key residues responsible for recognition of ubiquitin and SUMO2 are identified. Our data suggest inhibition of Usp25's catalytic activity upon the non-covalent binding of SUMO2 to the Usp25 SUMO-interacting motif. We also find that SUMO2 can competitively block the interaction between the Usp25 UBR and its ubiquitin substrates. Based on our findings, we have proposed a working model to depict the regulatory role of the Usp25 UBR in the functional display of the enzyme.


Asunto(s)
Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Animales , Calorimetría , Cromatografía en Gel , Dispersión Dinámica de Luz , Escherichia coli , Humanos , Ratones , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios Proteicos , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Soluciones , Ubiquitina Tiolesterasa/genética
10.
J Biol Chem ; 290(36): 21996-2004, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195632

RESUMEN

Human ataxin 7 (Atx7) is a component of the deubiquitination module (DUBm) in the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex for transcriptional regulation, and expansion of its polyglutamine (polyQ) tract leads to spinocerebellar ataxia type 7. However, how polyQ expansion of Atx7 affects DUBm function remains elusive. We investigated the effects of polyQ-expanded Atx7 on ubiquitin-specific protease (USP22), an interacting partner of Atx7 functioning in deubiquitination of histone H2B. The results showed that the inclusions or aggregates formed by polyQ-expanded Atx7 specifically sequester USP22 through their interactions mediated by the N-terminal zinc finger domain of Atx7. The mutation of the zinc finger domain in Atx7 that disrupts its interaction with USP22 dramatically abolishes sequestration of USP22. Moreover, polyQ expansion of Atx7 decreases the deubiquitinating activity of USP22 and, consequently, increases the level of monoubiquitinated H2B. Therefore, we propose that polyQ-expanded Atx7 forms insoluble aggregates that sequester USP22 into a catalytically inactive state, and then the impaired DUBm loses the function to deubiquitinate monoubiquitinated histone H2B or H2A. This may result in dysfunction of the SAGA complex and transcriptional dysregulation in spinocerebellar ataxia type 7 disease.


Asunto(s)
Ataxina-7/metabolismo , Histona Acetiltransferasas/metabolismo , Complejos Multienzimáticos/metabolismo , Tioléster Hidrolasas/metabolismo , Ataxina-7/genética , Sitios de Unión/genética , Western Blotting , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Microscopía Fluorescente , Mutación , Péptidos/genética , Agregado de Proteínas , Unión Proteica , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Tioléster Hidrolasas/genética , Expansión de Repetición de Trinucleótido/genética , Ubiquitina Tiolesterasa , Ubiquitinación , Dedos de Zinc/genética
11.
Biochem J ; 471(2): 155-65, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26268556

RESUMEN

The deubiquitinase ubiquitin-specific protease 28 (Usp28) contains a ubiquitin-binding region (UBR) composed of one ubiquitin-associated domain (UBA) and one ubiquitin-interacting motif (UIM) at its N-terminus. It is of interest that an additional small ubiquitin-like modifier (SUMO)-interacting motif (SIM) is located next to its UIM. To date, the functional role of the Usp28 UBR is still not understood. To elucidate the regulatory mechanism of the UBR on the full functional display of Usp28, in the present study, NMR and biochemical approaches were applied. The solution structure of Usp28 UBR was obtained, and the key residues responsible for ubiquitin and SUMO1/2 recognition were identified. In addition, we find that the ubiquitin-binding ability of Usp28 UBR was required for full enzymatic activity of Usp28, whereas binding of SUMO1/2 impaired the catalytic activity of the enzyme by competitively blocking its interactions with ubiquitin substrates. Our findings provide a first insight into understanding how the enzymatic activity of Usp28 is regulated by its non-catalytic UBR and endogenous ligands.


Asunto(s)
Ubiquitina Tiolesterasa/química , Secuencias de Aminoácidos , Humanos , Estructura Terciaria de Proteína , Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Relación Estructura-Actividad , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación/fisiología
12.
Molecules ; 21(5)2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27164070

RESUMEN

In this study, a series of novel N-substituted 2-(2-(adamantan-1-yl)-1H-indol-3-yl)-2-oxoacetamide derivatives were synthesized, and evaluated for their cytotoxicity in human cell lines including Hela (cervical cancer), MCF7 (breast cancer ) and HepG2 (liver cancer). Several compounds were found to have potent anti-proliferative activity against those human cancer cell lines and compound 5r showed the most potent biological activity against HepG2 cells with an IC50 value of 10.56 ± 1.14 µΜ. In addition, bioassays showed that compound 5r induced time-dependent and dose-dependent cleavage of poly ADP-ribose polymerase (PARP), and also induced a dose-dependent increase in caspase-3 and caspase-8 activity, but had little effect on caspase-9 protease activity in HepG2 cells. These results provide evidence that 5r-induced apoptosis in HepG2 cell is caspase-8-dependent.


Asunto(s)
Acetamidas/síntesis química , Acetamidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Acetamidas/química , Antineoplásicos/química , Caspasas/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Estructura Molecular , Poli(ADP-Ribosa) Polimerasas/metabolismo
13.
J Biol Chem ; 288(43): 31339-49, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24019527

RESUMEN

The NEDD8 protein and neddylation levels in cells are modulated by NUB1L or NUB1 through proteasomal degradation, but the underlying molecular mechanism is not well understood. Here, we report that NUB1L down-regulated the protein levels of NEDD8 and neddylation through specifically recognizing NEDD8 and P97/VCP. NUB1L directly interacted with NEDD8, but not with ubiquitin, on the key residue Asn-51 of NEDD8 and with P97/VCP on its positively charged VCP binding motif. In coordination with the P97-UFD1-NPL4 complex (P97(UFD1/NPL4)), NUB1L promotes transfer of NEDD8 to proteasome for degradation. This mechanism is also exemplified by the canonical neddylation of cullin 1 for SCF (SKP1-cullin1-F-box) ubiquitin E3 ligases that is exquisitely regulated by the turnover of NEDD8.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Ubiquitinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Proteínas de Ciclo Celular/genética , Línea Celular , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteína NEDD8 , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteínas/genética , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Factores de Transcripción/genética , Ubiquitinas/genética , Proteína que Contiene Valosina
14.
J Biol Chem ; 288(27): 19614-24, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23689371

RESUMEN

TDP-43 (TAR DNA-binding protein of 43 kDa) is a major deposited protein in amyotrophic lateral sclerosis and frontotemporal dementia with ubiquitin. A great number of genetic mutations identified in the flexible C-terminal region are associated with disease pathologies. We investigated the molecular determinants of TDP-43 aggregation and its underlying mechanisms. We identified a hydrophobic patch (residues 318-343) as the amyloidogenic core essential for TDP-43 aggregation. Biophysical studies demonstrated that the homologous peptide formed a helix-turn-helix structure in solution, whereas it underwent structural transformation from an α-helix to a ß-sheet during aggregation. Mutation or deletion of this core region significantly reduced the aggregation and cytoplasmic inclusions of full-length TDP-43 (or TDP-35 fragment) in cells. Thus, structural transformation of the amyloidogenic core initiates the aggregation and cytoplasmic inclusion formation of TDP-43. This particular core region provides a potential therapeutic target to design small-molecule compounds for mitigating TDP-43 proteinopathies.


Asunto(s)
Amiloide/metabolismo , Proteínas de Unión al ADN/metabolismo , Cuerpos de Inclusión/metabolismo , Amiloide/genética , Animales , Caenorhabditis elegans , Proteínas de Unión al ADN/genética , Diseño de Fármacos , Células HeLa , Secuencias Hélice-Giro-Hélice , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/patología , Estructura Terciaria de Proteína , Proteinopatías TDP-43/tratamiento farmacológico , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/metabolismo , Proteinopatías TDP-43/patología
15.
Biochim Biophys Acta ; 1834(12): 2672-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24100225

RESUMEN

P97 protein, also referred to as valosin-containing protein (VCP), is an AAA-ATPase (ATPase associated with a variety of cellular activities) that mediates vital cellular activities with the cooperation of many cofactors. A group of cofactors interact with the N-terminal domain of P97 (P97N) through their Arg/Lys-rich peptide motifs. We investigated the interactions between P97 and these motifs, including VCP-binding motif (VBM) and VCP-interacting motif (VIM). The solution structures of the VBM motif from HRD1 and the VIM motif from SVIP are both comprised mainly of a single α-helix. The VIM motifs generally have stronger P97N-binding affinities than the VBMs, and SVIP (VIM) can compete with HRD1-VBM for the interaction, providing a possibility that VIM-containing proteins (such as SVIP) act as competitors against VBM-containing proteins (such as HRD1) for interacting with P97. Based on biochemical features of the VBM motifs, we also identified NUB1L (NEDD8 ultimate buster-1 long) as a novel VBM-containing protein, which is involved in proteasomal degradation of NEDD8 through the P97 pathway.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Arginina/química , Arginina/genética , Arginina/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteína NEDD8 , Péptidos/química , Péptidos/genética , Proteínas de Unión a Fosfato , Prolina/química , Prolina/genética , Prolina/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Factores de Transcripción/química , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinas/química , Ubiquitinas/genética , Ubiquitinas/metabolismo , Proteína que Contiene Valosina
16.
FEBS J ; 291(8): 1795-1812, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308810

RESUMEN

Ataxin-2 (Atx2) is a polyglutamine (polyQ) protein, in which abnormal expansion of the polyQ tract can trigger protein aggregation and consequently cause spinocerebellar ataxia type 2 (SCA2), but the mechanism underlying how Atx2 aggregation leads to proteinopathy remains elusive. Here, we investigate the molecular mechanism and cellular consequences of Atx2 aggregation by molecular cell biology approaches. We have revealed that either normal or polyQ-expanded Atx2 can sequester Raptor, a component of mammalian target of rapamycin complex 1 (mTORC1), into aggregates based on their specific interaction. Further research indicates that the polyQ tract and the N-terminal region (residues 1-784) of Atx2 are responsible for the specific sequestration. Moreover, this sequestration leads to suppression of the mTORC1 activity as represented by down-regulation of phosphorylated P70S6K, which can be reversed by overexpression of Raptor. As mTORC1 is a key regulator of autophagy, Atx2 aggregation and sequestration also induces autophagy by upregulating LC3-II and reducing phosphorylated ULK1 levels. This study proposes that Atx2 sequesters Raptor into aggregates, thereby impairing cellular mTORC1 signaling and inducing autophagy, and will be beneficial for a better understanding of the pathogenesis of SCA2 and other polyQ diseases.


Asunto(s)
Ataxina-2 , Ataxina-2/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
17.
J Biol Chem ; 287(8): 6044-52, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22219199

RESUMEN

The J-domain co-chaperones work together with the heat shock protein 70 (HSP70) chaperone to regulate many cellular events, but the mechanism underlying the J-domain-mediated HSP70 function remains elusive. We studied the interaction between human-inducible HSP70 and Homo sapiens J-domain protein (HSJ1a), a J domain and UIM motif-containing co-chaperone. The J domain of HSJ1a shares a conserved structure with other J domains from both eukaryotic and prokaryotic species, and it mediates the interaction with and the ATPase cycle of HSP70. Our in vitro study corroborates that the N terminus of HSP70 including the ATPase domain and the substrate-binding ß-subdomain is not sufficient to bind with the J domain of HSJ1a. The C-terminal helical α-subdomain of HSP70, which was considered to function as a lid of the substrate-binding domain, is crucial for binding with the J domain of HSJ1a and stimulating the ATPase activity of HSP70. These fluctuating helices are likely to contribute to a proper conformation of HSP70 for J-domain binding other than directly bind with the J domain. Our findings provide an alternative mechanism of allosteric activation for functional regulation of HSP70 by its J-domain co-chaperones.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Regulación Alostérica , Activación Enzimática , Humanos , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Soluciones
18.
Biochim Biophys Acta ; 1824(12): 1394-400, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22789558

RESUMEN

In the Gram-negative bacterium of Escherichia coli, eight genes organized as a ccm operon (ccmABCDEFGH) are involved in the maturation of c-type cytochromes. The proteins encoded by the last three genes ccmFGH are believed to form a lyase complex functioning in the reduction of apocytochrome c and haem attachment. Among them, CcmH is a membrane-associated protein; its N-terminus is a catalytic domain with the active CXXC motif and the C-terminus is predicted as a TPR-like domain with unknown function. By using SCAM (scanning cysteine accessibility mutagenesis) and Gaussia luciferase fusion assays, we provide experimental evidence for the entire topological structure of E. coli CcmH. The mature CcmH is a periplasm-resident oxidoreductase anchored to the inner membrane by two transmembrane segments. Both N- and C-terminal domains are located and function in the periplasmic compartment. Moreover, the N-terminal domain forms a monomer in solution, while the C-terminal domain is a compact fold with helical structures. The NMR solution structure of the catalytic domain in reduced form exhibits mainly a three-helix bundle, providing further information for the redox mechanism. The redox potential suggests that CcmH exhibits a strong reductase that may function in the last step of reduction of apocytochrome c for haem attachment.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Dominio Catalítico , Proteínas de Escherichia coli/química , Modelos Moleculares , Oxidación-Reducción , Pliegue de Proteína
19.
Biochem J ; 441(1): 143-9, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21851340

RESUMEN

UCHs [Ub (ubiquitin) C-terminal hydrolases] are a family of deubiquitinating enzymes that are often thought to only remove small C-terminal peptide tails from Ub adducts. Among the four UCHs identified to date, neither UCH-L3 nor UCH-L1 can catalyse the hydrolysis of isopeptide Ub chains, but UCH-L5 can when it is present in the PA700 complex of the proteasome. In the present paper, we report that the UCH domain of UCH-L5, different from UCH-L1 and UCH-L3, by itself can process the K48-diUb (Lys48-linked di-ubiquitin) substrate by cleaving the isopeptide bond between two Ub units. The catalytic specificity of the four UCHs is dependent on the length of the active-site crossover loop. The UCH domain with a long crossover loop (usually >14 residues), such as that of UCH-L5 or BAP1 [BRCA1 (breast cancer early-onset 1)-associated protein 1], is able to cleave both small and large Ub derivatives, whereas the one with a short loop can only process small Ub derivatives. We also found that elongation of the crossover loop enables UCH-L1 to have isopeptidase activity for K48-diUb in a length-dependent manner. Thus the loop length of UCHs defines their substrate specificity for diUb chains, suggesting that the chain flexibility of the crossover loop plays an important role in determining its catalytic activity and substrate specificity for cleaving isopeptide Ub chains.


Asunto(s)
Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Catálisis , Dominio Catalítico , Clonación Molecular , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Hidrólisis , Conformación Proteica , Especificidad por Sustrato , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/clasificación , Ubiquitina Tiolesterasa/genética
20.
Pak J Med Sci ; 29(5): 1285-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24353739

RESUMEN

The left main coronary artery (LMCA) vasospasm is rare. We report a suspected acute coronary syndrome patient with hyperthyroidism who had LMCA vasospasm. Coronary angiogram showed 60% stenosis at LMCA. After administering nitroglycerin, re-angiography showed no significant stenosis. Then we evaluated LMCA lesion using intravascular ultrasound (IVUS) showing no significant stenosis. We considered that it was a LMCA vasospasm and may be assosiated with hyperthyroid state. After anti-thyroid and anti-spasm treatment, chest pain subsided. In conclusion, hyperthyroidism induced coronary hypersensitivity may contribute to LMCA vasospasm as seen in this case. IVUS may be useful to identify coronary vasospasm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA