Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 505, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648968

RESUMEN

BACKGROUND: Blueberries (Vaccinium corymbosum) are regarded as "superfoods" attributed to large amounts of anthocyanins, a group of flavonoid metabolites, which provide pigmentation in plant and beneficial effects for human health. MYB transcription factor is one of vital components in the regulation of plant secondary metabolism, which occupies a dominant position in the regulatory network of anthocyanin biosynthesis. However, the role of MYB family in blueberry responding to anthocyanin biosynthesis remains elusive. RESULTS: In this study, we conducted a comprehensive analysis of VcMYBs in blueberry based on the genome data, including phylogenetic relationship, conserved motifs, identification of differentially expressed MYB genes during fruit development and their expression profiling, etc. A total of 437 unique MYB sequences with two SANT domains were identified in blueberry, which were divided into 3 phylogenetic trees. Noticeably, there are many trigenic and tetragenic VcMYBs pairs with more than 95% identity to each other. Meanwhile, the transcript accumulations of VcMYBs were surveyed underlying blueberry fruit development, and they showed diverse expression patterns, suggesting various functional roles in fruit ripening. More importantly, distinct transcript profiles between skin and pulp of ripe fruit were observed for several VcMYBs, such as VcMYB437, implying the potential roles in anthocyanin biosynthesis. CONCLUSIONS: Totally, 437 VcMYBs were identified and characterized. Subsequently, their transcriptional patterns were explored during fruit development and fruit tissues (skin and pulp) closely related to anthocyanin biosynthesis. These genome-wide data and findings will contribute to demonstrating the functional roles of VcMYBs and their regulatory mechanisms for anthocyanins production and accumulation in blueberry in the future study.


Asunto(s)
Antocianinas , Arándanos Azules (Planta) , Humanos , Antocianinas/genética , Arándanos Azules (Planta)/genética , Frutas/genética , Filogenia , Metabolismo Secundario
2.
Small ; 18(10): e2106337, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34994076

RESUMEN

Li-rich Mn-based oxides (LRMOs) are promising cathode materials for next-generation lithium-ion batteries (LIBs) with high specific energy (≈900 Wh kg-1 ) because of anionic redox contribution. However, LRMOs suffer from issues such as irreversible release of lattice oxygen, transition metal (TM) dissolution, and parasitic cathode-electrolyte reactions. Herein, a facile, scalable route to build homogenous and ultrathin Li2 TiO3 (LTO) coating layer on the primary particles of LRMO through molten salt (LiCl) assisted solid-liquid reaction between TiO2 and Li1.08 Mn0.54 Co0.13 Ni0.13 O2 is reported. The prepared LTO-coated Li1.08 Mn0.54 Co0.13 Ni0.13 O2 (LTO@LRMO) exhibits 99.7% capacity retention and 95.3% voltage retention over 125 cycles at 0.2 C, significantly outperforming uncoated LRMO. Combined characterizations of differential electrochemical mass spectrometry, in situ X-ray diffraction, and ex situ X-ray photoelectron spectroscopy evidence significantly suppressed oxygen release, phase transition, and interfacial reactions. Further analysis of cycled electrodes reveals that the LTO coating layer inhibits TM dissolution and prevents the lithium anode from TM crossover effect. This study expands the primary particle coating strategy to upgrade LRMO cathode materials for advanced LIBs.

3.
ACS Nano ; 18(20): 12598-12609, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38723158

RESUMEN

This review presents an overview of the application of electrochemical liquid-phase transmission electron microscopy (ELP-TEM) in visualizing rechargeable battery reactions. The technique provides atomic-scale spatial resolution and real-time temporal resolution, enabling direct observation and analysis of battery materials and processes under realistic working conditions. The review highlights key findings and insights obtained by ELP-TEM on the electrochemical reaction mechanisms and discusses the current limitations and future prospects of ELP-TEM, including improvements in spatial and temporal resolution and the expansion of the scope of materials and systems that can be studied. Furthermore, the review underscores the critical role of ELP-TEM in understanding and optimizing the design and fabrication of high-performance, long-lasting rechargeable batteries.

4.
Adv Mater ; : e2403385, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769003

RESUMEN

Capacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low-salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high-density semi-metallic molybdenum disulfide (1T'-MoS2) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm-3 under an ultrahigh scan rate of 1000 mV s-1 with a lower charge-transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H-MoS2 electrode, is reported. Furthermore, 1T'-MoS2 electrode demonstrates exceptional volumetric desalination capacity of 65.1 mgNaCl cm-3 in CDI experiments. Ex situ X-ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1T'-MoS2 interlayer to accommodate cations such as Na+, K+, Ca2+, and Mg2+, which in turn enhances the capacity. Theoretical analysis unveils that 1T' phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D-layered nanolaminates with high-volumetric performance for CDI desalination.

5.
ACS Appl Mater Interfaces ; 11(45): 42000-42005, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31647213

RESUMEN

The degradation or dendrite formation of zinc metal electrodes has shown to limit the cycle life of rechargeable aqueous zinc batteries, and a few anode protection methods are proposed. We herein demonstrate that, except for external protections, a simple design of an electrolyte can effectively promote stable and facile Zn stripping/plating from/on zinc electrodes. By using Zn(ClO4)2 in the aqueous electrolyte, reversible Zn stripping/plating is achieved for over 3000 h at 1 mA cm-2 current density and 1 mA h cm-2 capacity, superior to the conventional ZnSO4 electrolyte. The overpotential is constant within each cycle and only increases slightly with the increase of current densities. The excellent performance is guaranteed by the controlled formation of a Cl- containing layer, which limits continuous side reactions. The Zn(ClO4)2 electrolyte shows anodic stability up to 2.4 V, and excellent electrochemical performance is achieved for an example cell with the VO2 cathode, confirming the applicability of the electrolyte for Zn batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA