Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(32): e2209056119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914139

RESUMEN

Contact electrification between water and a solid surface is crucial for physicochemical processes at water-solid interfaces. However, the nature of the involved processes remains poorly understood, especially in the initial stage of the interface formation. Here we report that H2O2 is spontaneously produced from the hydroxyl groups on the solid surface when contact occurred. The density of hydroxyl groups affects the H2O2 yield. The participation of hydroxyl groups in H2O2 generation is confirmed by mass spectrometric detection of 18O in the product of the reaction between 4-carboxyphenylboronic acid and 18O-labeled H2O2 resulting from 18O2 plasma treatment of the surface. We propose a model for H2O2 generation based on recombination of the hydroxyl radicals produced from the surface hydroxyl groups in the water-solid contact process. Our observations show that the spontaneous generation of H2O2 is universal on the surfaces of soil and atmospheric fine particles in a humid environment.


Asunto(s)
Electricidad , Peróxido de Hidrógeno , Radical Hidroxilo , Agua , Atmósfera/química , Humedad , Peróxido de Hidrógeno/síntesis química , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Espectrometría de Masas , Isótopos de Oxígeno/análisis , Isótopos de Oxígeno/química , Tamaño de la Partícula , Suelo/química , Agua/química
2.
Environ Sci Technol ; 58(8): 3726-3736, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38353258

RESUMEN

Mono(2-ethylhexyl) phthalate (MEHP), as a highly toxic and biologically active phthalate metabolite, poses considerable risks to the environment and humans. Despite the existence of in vitro studies, there is a lack of in vivo experiments assessing its toxicity, particularly thyroid toxicity. Herein, we investigated the thyroid-disrupting effects of MEHP and the effects on growth and development of maternal exposure to MEHP during pregnancy and lactation on the offspring modeled by SD rats. We found that thyroid hormone (TH) homeostasis was disrupted in the offspring, showing a decrease in total TH levels, combined with an increase in free TH levels. Nonhomeostasis ultimately leads to weight loss in female offspring, longer anogenital distance in male offspring, prolonged eye-opening times, and fewer offspring. Our findings indicate that maternal exposure to MEHP during pregnancy and lactation indirectly influences the synthesis, transport, transformation, and metabolism of THs in the offspring. Meanwhile, MEHP disrupted the morphology and ultrastructure of the thyroid gland, leading to TH disruption. This hormonal disruption might ultimately affect the growth and development of the offspring. This study provides a novel perspective on the thyroid toxicity mechanisms of phthalate metabolites, emphasizing the health risks to newborns indirectly exposed to phthalates and their metabolites.


Asunto(s)
Dietilhexil Ftalato , Dietilhexil Ftalato/análogos & derivados , Ácidos Ftálicos , Humanos , Embarazo , Masculino , Femenino , Animales , Ratas , Ratas Sprague-Dawley , Hormonas Tiroideas , Ácidos Ftálicos/metabolismo , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , Lactancia , Homeostasis , Crecimiento y Desarrollo
3.
Environ Sci Technol ; 58(14): 6077-6082, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38556743

RESUMEN

The Paris Agreement and the Minamata Convention on Mercury are two of the most important environmental conventions being implemented concurrently, with a focus on reducing carbon and mercury emissions, respectively. The relation between mercury and carbon influences the interactions and outcomes of these two conventions. This perspective investigates the link between mercury and CO2, assessing the consequences and exploring the policy implications of this link. We present scientific evidence showing that mercury and CO2 levels are negatively correlated under natural conditions. As a result of this negative correlation, the CO2 level under the current mercury reduction scenario is predicted to be 2.4-10.1 ppm higher than the no action scenario by 2050, equivalent to 1.0-4.8 years of CO2 increase due to human activity. The underlying causations of this negative correlation are complex and need further research. Economic analysis indicates that there is a trade-off between the benefits and costs of mercury reduction actions. As reducing mercury emission may inadvertently undermine efforts to achieve climate goals, we advocate for devising a coordinated implementation strategy for carbon and mercury conventions to maximize synergies and reduce trade-offs.


Asunto(s)
Dióxido de Carbono , Mercurio , Humanos , Mercurio/análisis , Políticas , Clima
4.
Environ Sci Technol ; 58(18): 7860-7869, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38647522

RESUMEN

Algae are an entry point for mercury (Hg) into the food web. Bioconcentration of Hg by algae is crucial for its biogeochemical cycling and environmental risk. Herein, considering the cell heterogeneity, we investigated the bioconcentration of coexisting isotope-labeled inorganic (199IHg) and methyl Hg (201MeHg) by six typical freshwater and marine algae using dual-mass single-cell inductively coupled plasma mass spectrometry (scICP-MS). First, a universal pretreatment procedure for the scICP-MS analysis of algae was developed. Using the proposed method, the intra- and interspecies heterogeneities and the kinetics of Hg bioconcentration by algae were revealed at the single-cell level. The heterogeneity in the cellular Hg contents is largely related to cell size. The bioconcentration process reached a dynamic equilibrium involving influx/adsorption and efflux/desorption within hours. Algal density is a key factor affecting the distribution of Hg between algae and ambient water. Cellular Hg contents were negatively correlated with algal density, whereas the volume concentration factors almost remained constant. Accordingly, we developed a model based on single-cell analysis that well describes the density-driven effects of Hg bioconcentration by algae. From a novel single-cell perspective, the findings improve our understanding of algal bioconcentration governed by various biological and environmental factors.


Asunto(s)
Mercurio , Mercurio/metabolismo , Espectrometría de Masas , Compuestos de Metilmercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Cadena Alimentaria , Análisis de la Célula Individual
5.
Environ Sci Technol ; 58(18): 7743-7757, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652822

RESUMEN

Permeabilities of various trace elements (TEs) through the blood-follicle barrier (BFB) play an important role in oocyte development. However, it has not been comprehensively described as well as its involved biological pathways. Our study aimed to construct a blood-follicle distribution model of the concerned TEs and explore their related biological pathways. We finally included a total of 168 women from a cohort of in vitro fertilization-embryo transfer conducted in two reproductive centers in Beijing City and Shandong Province, China. The concentrations of 35 TEs in both serum and follicular fluid (FF) samples from the 168 women were measured, as well as the multiomics features of the metabolome, lipidome, and proteome in both plasma and FF samples. Multiomics features associated with the transfer efficiencies of TEs through the BFB were selected by using an elastic net model and further utilized for pathway analysis. Various machine learning (ML) models were built to predict the concentrations of TEs in FF. Overall, there are 21 TEs that exhibited three types of consistent BFB distribution characteristics between Beijing and Shandong centers. Among them, the concentrations of arsenic, manganese, nickel, tin, and bismuth in FF were higher than those in the serum with transfer efficiencies of 1.19-4.38, while a reverse trend was observed for the 15 TEs with transfer efficiencies of 0.076-0.905, e.g., mercury, germanium, selenium, antimony, and titanium. Lastly, cadmium was evenly distributed in the two compartments with transfer efficiencies of 0.998-1.056. Multiomics analysis showed that the enrichment of TEs was associated with the synthesis and action of steroid hormones and the glucose metabolism. Random forest model can provide the most accurate predictions of the concentrations of TEs in FF among the concerned ML models. In conclusion, the selective permeability through the BFB for various TEs may be significantly regulated by the steroid hormones and the glucose metabolism. Also, the concentrations of some TEs in FF can be well predicted by their serum levels with a random forest model.


Asunto(s)
Aprendizaje Automático , Oligoelementos , Humanos , Oligoelementos/metabolismo , Femenino , Líquido Folicular/metabolismo , Líquido Folicular/química , China , Multiómica
6.
Environ Res ; 252(Pt 4): 119077, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38714222

RESUMEN

Household products, in response to regulations, increasingly incorporate phthalate (PAE) alternatives instead of traditional PAEs. However, limited information exists regarding the fate and exposure risk of these PAE alternatives and their monoesters in indoor environments. The contamination levels of PAE alternatives and their monoesters in indoor dust might vary across regions due to climate, population density, industrial activities, and interior decoration practices. By analyzing indoor dust samples from six geographical regions across China, this study aims to shed light on concentrations, profiles, and human exposure to 12 PAE alternatives and 9 their monoesters. Bis(2-ethylhexyl) benzene-1,4-dicarboxylate (DEHTP), tributyl 2-acetyloxypropane-1,2,3-tricarboxylate (ATBC), and tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate (TOTM) were the main PAE alternatives in dust across all regions. The total concentrations of 12 PAE alternatives ranged from 0.125 to 4160 µg/g in indoor dust. High molecular weight PAE alternatives had significantly correlated concentrations (p < 0.05) based on Spearman analysis, suggesting their co-use in heat-resistant plastic products. A collective of nine monoesters were identified in most samples, with total concentrations ranging from 0.048 to 29.6 µg/g. The median concentrations of PAE alternatives were highest in North China (66.8 µg/g), while those of monoesters were highest in Southwest China (6.93 µg/g). A significant correlation (p < 0.05) between the concentrations of DEHTP and its monoester suggested that degradation could be a potential source of monoesters. Although hazard quotients (HQs) have been calculated to suggest that the current exposure is unlikely to pose a significant health risk, the lack of toxicity threshold data and the existence of additional exposure pathways necessitate a further confirmation.


Asunto(s)
Contaminación del Aire Interior , Polvo , Ácidos Ftálicos , Polvo/análisis , China , Ácidos Ftálicos/análisis , Humanos , Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales/análisis , Contaminantes Atmosféricos/análisis , Ésteres/análisis , Monitoreo del Ambiente
7.
J Environ Manage ; 356: 120432, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479282

RESUMEN

Biodegradation of soil organic matter (SOM), which involves greenhouse gas (GHG) emissions, plays an essential role in the global carbon cycle. Over the past few decades, this has become an important research focus, particularly in natural ecosystems. SOM biodegradation significantly affects contaminants in the environment, such as mercury (Hg) methylation, producing highly toxic methylmercury (MeHg). However, the potential link between GHG production from SOM turnover in contaminated soils and biogeochemical processes involving contaminants remains unclear. In this study, we investigated the dynamics of GHG, MeHg production, and the relationship between biogeochemical processes in soils from two typical Hg mining sites. The two contaminated soils have different pathways, explaining the significant variations in GHG and MeHg production. The divergence of the microbial communities in these two biogeochemical processes is essential. In addition to the microbial role, abiotic factors such as Hg species can significantly affect MeHg production. On the other hand, we found an inverse relationship between CH4 and MeHg, suggesting that carbon emission reduction policies and management could inadvertently increase the MeHg levels. This highlights the need for an eclectic approach to organic carbon sequestration and contaminant containment. These findings suggest that it is difficult to establish a general pattern to describe and explain the SOM degradation and MeHg production in contaminated soils within the specific scenarios. However, this study provides a case study and helpful insights for further understanding the links between environmental risks and carbon turnover in Hg mining areas.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Suelo , Ecosistema , Contaminantes del Suelo/análisis , Mercurio/análisis , Carbono , Biodegradación Ambiental , Monitoreo del Ambiente
8.
Anal Chem ; 95(29): 10839-10843, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37401922

RESUMEN

Bioaerosol transmission is one of the important transmission pathways of COVID-19 and other infectious respiratory diseases caused by viral infection. The ability to detect bioaerosols and characterize encapsulated pathogens both in situ and in real time is crucial for early warning and monitoring of the progress of an epidemic or pandemic. The lack of a powerful analytical tool for distinguishing between bioaerosols and nonbioaerosols as well as for identification of pathogen species contained in the bioaerosols is the bottleneck in related fields. Herein, a promising solution for in situ and real-time accurate and sensitive detection of bioaeorosols is proposed by integrating single-particle aerosol mass spectrometry, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and fluorescence spectroscopy. The proposed mass spectrometry aims at detecting bioaerosols in a range of 0.5-10 µm with adequate sensitivity and specificity. This single-particle bioaerosol mass spectrometry would not only be a powerful tool that can be useful for the authorities and public health monitoring but also would be an example of advances in mass spectrometry.


Asunto(s)
COVID-19 , Humanos , Aerosoles y Gotitas Respiratorias , Espectrometría de Masas , Análisis Espectral
9.
Environ Sci Technol ; 57(39): 14717-14725, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37682840

RESUMEN

Dioxins, such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), are among the most toxic unintentionally produced persistent organic pollutants, and their emission is of great concern. Herein, we discovered abundant dioxin formation in soil and various organic carbon-containing matrices after digestion with aqua regia. Σ17PCDD/Fs concentrations were in the range of 66.6-142,834 pg/g dw (5.6-17,021 pg WHO2005-TEQ/g dw) in 19 soil samples after digestion with aqua regia for 6 h. Σ17PCDD/Fs concentration was significantly and positively correlated with soil organic carbon content (R2 = 0.89; p < 0.01). Compared with cellulose and lignin, humic acid served as an important organic matter component that was converted to PCDD/Fs during soil digestion. Strong oxidation and production of reactive chlorine by aqua regia may be the key factors in the formation of PCDD/Fs. The yearly emission of PCDD/Fs due to digestion with strong acids by the inspection and testing industry was estimated to be 83.8 g TEQ in China in 2021 based on the highest level, which was ∼0.9% of the total dioxin inventory in China. Great attention should be paid to unexpected dioxin formation during digestion processes considering the potential risk of release from laboratories and enterprises.


Asunto(s)
Benzofuranos , Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Suelo , Carbono , Dibenzofuranos , Benzofuranos/análisis , China , Dibenzofuranos Policlorados , Digestión , Monitoreo del Ambiente
10.
Environ Sci Technol ; 57(23): 8514-8523, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37252706

RESUMEN

Blood is an important reservoir for Pb storage in living organisms, and the storage of Pb in blood cells inhibits its discharge from blood. However, the mechanism and molecular targets of Pb entry and exit from blood cells have not been elucidated, which is the major barrier to reducing blood Pb levels in normal human beings. In this study, we explored the effect of Pb-binding proteins on blood Pb levels in rats at environmentally relevant concentrations (0.32 µg/g) by identifying the functions of Pb-binding proteins and validating them with inhibitors. The results showed that Pb-binding proteins in blood cells were mainly related to phagocytosis, while in plasma, they were mainly involved in the regulation of endopeptidase activity. Meanwhile, at the normal population Pb levels, endocytosis inhibitors, endopeptidase activity inhibitors, and coadministration of both can reduce the level of Pb in MEL (mouse erythroleukemia cells) cells by up to 50, 40, and 50%, respectively, while in rat blood, the reduction can reach up to 26, 13, and 32%, respectively. Collectively, these findings reveal that endocytosis increases blood Pb levels and provides a possible molecular target for Pb excretion at ambient concentrations.


Asunto(s)
Endocitosis , Plomo , Animales , Ratas , Células Sanguíneas
11.
Environ Sci Technol ; 57(49): 20595-20604, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38007712

RESUMEN

Microbial reduction plays a crucial role in Hg redox and the global cycle. Although intracellular Hg(II) reduction mediated by MerA protein is well documented, it is still unclear whether or how bacteria reduce Hg(II) extracellularly without its internalization. Herein, for the first time, we discovered the extracellular reduction of Hg(II) by a widely distributed aerobic marine bacterium Alteromonas sp. KD01 through a superoxide-dependent mechanism. The generation of superoxide by Alteromonas sp. KD01 was determined using 3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide and methyl cypridina luciferin analogue as probes via UV-vis and chemiluminescence detection, respectively. The results demonstrated that Hg(II) reduction was inhibited by superoxide scavengers (superoxide dismutase (SOD) and Cu(NO3)2) or inhibitors of reduced nicotinamide adenine dinucleotide (NADH) oxidoreductases. In contrast, the addition of NADH significantly improved superoxide generation and, in turn, Hg(II) reduction. Direct evidence of superoxide-mediated Hg(II) reduction was provided by the addition of superoxide using KO2 in deionized water and seawater. Moreover, we observed that even superoxide at an environmental concentration of 9.6 ± 0.5 nM from Alteromonas sp. KD01 (5.4 × 106 cells mL-1) was capable of significantly reducing Hg(II). Our findings provide a greater understanding of Hg(II) reduction by superoxide from heterotrophic bacteria and eukaryotic phytoplankton in diverse aerobic environments, including surface water, sediment, and soil.


Asunto(s)
Alteromonas , Mercurio , Superóxidos/metabolismo , Alteromonas/metabolismo , NAD/metabolismo , Bacterias/metabolismo , Agua
12.
Environ Sci Technol ; 57(48): 19772-19781, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37932229

RESUMEN

Particulate HgS play crucial roles in the mercury (Hg) cycle. Approximately 20-90% of dissolved Hg can be transformed into particulate HgS by algae. However, detailed knowledge regarding these particles, including sizes and distribution, remains unknown. The present study explored the formation, distribution, and excretion of mercury nanoparticles (HgNPs) in diatom Chaetoceros curvisetus. The results demonstrated that HgNPs (HgS nanoparticles, 29.6-66.2 nm) formed intracellularly upon exposure to 5.0-100.0 µg L-1 Hg(II), accounting for 12-27% of the total Hg. HgNP concentrations significantly increased with increasing intracellular Hg(II) concentrations, while their sizes remained unaffected. HgNPs formed intracellularly and partly accumulated inside the cells (7-11%). Subsequently, the sizes of intracellular HgNPs gradually decreased to facilitate expulsion, 21-50% of which were excreted. These suggested the vital roles of HgNPs in comprehending marine Hg fate. Their unique physicochemical properties and bioavailability would influence Hg biotransformation in the ocean. Additionally, both intracellular and extracellular HgNPs contributed to Hg settling with cells, ultimately leading to Hg burial in sediments. Overall, these findings further deepened our understanding of Hg biotransformation and posed challenges in accurately estimating marine Hg flux and Hg burial.


Asunto(s)
Diatomeas , Mercurio , Nanopartículas , Contaminantes Químicos del Agua , Mercurio/análisis , Diatomeas/metabolismo , Contaminantes Químicos del Agua/análisis , Biotransformación , Nanopartículas/química
13.
Environ Sci Technol ; 57(40): 14994-15003, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37755700

RESUMEN

Mercury sulfide nanoparticles (HgSNPs), which occur widely in oxic and anoxic environments, can be microbially converted to highly toxic methylmercury or volatile elemental mercury, but it remains challenging to assess their bioavailability. In this study, an Escherichia coli-based whole-cell fluorescent biosensor was developed to explore the bioavailability and microbial activation process of HgSNPs. Results show that HgSNPs (3.17 ± 0.96 nm) trigger a sharp increase in fluorescence intensity of the biosensor, with signal responses almost equal to that of ionic Hg (Hg(II)) within 10 h, indicating high bioavailability of HgSNP. The intracellular total Hg (THg) of cells exposed to HgSNPs (200 µg L-1) was 3.52-8.59-folds higher than that of cells exposed to Hg(II) (200 µg L-1), suggesting that intracellular HgSNPs were only partially dissolved. Speciation analysis using size-exclusion chromatography (SEC)-inductively coupled plasma mass spectrometry (ICP-MS) revealed that the bacterial filtrate was not responsible for HgSNP dissolution, suggesting that HgSNPs entered cells in nanoparticle form. Combined with fluorescence intensity and intracellular THg analysis, the intracellular HgSNP dissolution ratio was estimated at 22-29%. Overall, our findings highlight the rapid internalization and high intracellular dissolution ratio of HgSNPs by E. coli, and intracellular THg combined with biosensors could provide innovative tools to explore the microbial uptake and dissolution of HgSNPs.

14.
Environ Sci Technol ; 57(21): 7924-7937, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37184982

RESUMEN

Although PM2.5 (fine particles with aerodynamic diameter <2.5 µm) exposure shows the potential to impact normal hematopoiesis, the detailed alterations in systemic hematopoiesis and the underlying mechanisms remain unclear. For hematopoiesis under steady-state or stress conditions, nuclear factor erythroid 2-related factor 2 (NRF2) is essential for regulating hematopoietic processes to maintain blood homeostasis. Herein, we characterized changes in the populations of hematopoietic stem progenitor cells and committed hematopoietic progenitors in the lungs and bone marrow (BM) of wild-type and Nrf2-/- C57BL/6J male mice. PM2.5-induced NRF2-dependent biased hematopoiesis toward myeloid lineage in the lungs and BM generates excessive numbers of various inflammatory immune cells, including neutrophils, monocytes, and platelets. The increased population of these immune cells in the lungs, BM, and peripheral blood has been associated with observed pulmonary fibrosis and high disease risks in an NRF2-dependent manner. Therefore, although NRF2 is a protective factor against stressors, upon PM2.5 exposure, NRF2 is involved in stress myelopoiesis and enhanced PM2.5 toxicity in pulmonary injury, even leading to systemic inflammation.


Asunto(s)
Hematopoyesis , Factor 2 Relacionado con NF-E2 , Ratones , Masculino , Animales , Ratones Endogámicos C57BL , Hematopoyesis/fisiología , Células Madre Hematopoyéticas , Material Particulado/toxicidad
15.
Environ Sci Technol ; 57(19): 7358-7369, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37144275

RESUMEN

While exogenous metal/metalloid (metal) exposure has been associated with reduced human semen quality, no study has assessed the associations of exogenous metals in human spermatozoa with semen quality. Here, we developed a strategy to explore the associations between exogenous metals in spermatozoa at single-cell resolution and human semen quality among 84 men screened as sperm donors, who provided 266 semen samples within 90 days. A cellular atlas of exogenous metals at the single-cell level was created with mass cytometry (CyTOF) technology, which concurrently displayed 18 metals in more than 50 000 single sperm. Exogenous metals in spermatozoa at single-cell resolution were extremely heterogeneous and diverse. Further analysis using multivariable linear regression and linear mixed-effects models revealed that the heterogeneity and prevalence of the exogenous metals at single-cell resolution were associated with semen quality. The heterogeneity of lead (Pb), tin (Sn), yttrium (Y), and zirconium (Zr) was negatively associated with sperm concentration and count, while their prevalence showed positive associations. These findings revealed that the heterogeneous properties of exogenous metals in spermatozoa were associated with human semen quality, highlighting the importance of assessing exogenous metals in spermatozoa at single-cell resolution to evaluate male reproductive health risk precisely.


Asunto(s)
Análisis de Semen , Semen , Humanos , Masculino , Espermatozoides , Recuento de Espermatozoides , Metales , Motilidad Espermática
16.
Anal Bioanal Chem ; 415(27): 6825-6838, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37848578

RESUMEN

This work aims to rapidly detect toxic alkaloids in traditional Chinese medicines (TCM) using laser desorption ionization mass spectrometry (LDI-MS). We systematically investigated twelve nanomaterials (NMs) as matrices and found that MoS2 and defect-rich-WO3 (D-WO3) were the best NMs for alkaloid detection. MoS2 and D-WO3 can be used directly as matrices dipped onto conventional ground steel target plates. Additionally, they can be conveniently fabricated as three-dimensional (3D) NM plates, where the MoS2 or D-WO3 NM is doped into resin and formed using a 3D printing process. We obtained good quantification of alkaloids using a chemothermal compound as an internal standard and detected related alkaloids in TCM extracts, Fuzi (Aconiti Lateralis Radix Praeparata), Caowu (Aconiti Kusnezoffii Radix), Chuanwu (Aconiti Radix), and Houpo (Magnoliae Officinalis Cortex). The work enabled the advantageous "dip and measure" method, demonstrating a simple and fast LDI-MS approach that achieves clean backgrounds for alkaloid detection. The 3D NM plates also facilitated mass spectrometry imaging of alkaloids in TCMs. This method has potential practical applications in medicine and food safety. Doped nanomaterial facilitates 3D printing target plate for rapid detection of alkaloids in laser desorption/ionization mass spectrometry.


Asunto(s)
Aconitum , Alcaloides , Medicamentos Herbarios Chinos , Molibdeno , Cromatografía Líquida de Alta Presión/métodos , Alcaloides/análisis , Espectrometría de Masas/métodos , Medicamentos Herbarios Chinos/química , Medicina Tradicional China , Aconitum/química
17.
Ecotoxicol Environ Saf ; 268: 115694, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37984289

RESUMEN

Lead (Pb) is a pervasive toxic metal contaminant associated with a high risk of myocardial injury. However, the precise mechanism underlying Pb-induced myocardial injury has yet to be fully elucidated. In this study, a murine model of Pb exposure (0, 1, 5, and 10 mg/kg) was employed to investigate the involvement of neutrophil degranulation in the induction of myocardial injury. Notably, serum levels of cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB) increased significantly in Pb-exposed mice, whereas cTnI levels in cardiomyocytes decreased, suggesting that Pb exposure may cause early myocardial injury. Moreover, Pb exposure was found to promote neutrophil degranulation, as evidenced by elevated myeloperoxidase (MPO) and neutrophil elastase (NE) concentrations in both the serum of Pb-exposed workers and Pb-exposed mice, as well as the extracellular supernatant of neutrophils following exposure. However, we found that serum level of cTnI enhanced by Pb exposure is associated with increased NE levels in the serum, but not with MPO levels. Upon treatment with NE inhibitor (sivelestat), the serum level of cTnI markedly reduced in Pb-exposed mice, we found that early myocardial injury is associated with NE levels in the serum. At the molecular level, western blotting analysis revealed an upregulation of ERK1/2 expression in vitro following Pb exposure, suggesting that the activation of the ERK1/2 signaling pathway may underlie the participation of neutrophil degranulation in Pb-induced myocardial injury. In summary, our findings demonstrate that Pb exposure can initiate early myocardial injury by promoting the neutrophil degranulation process, thereby highlighting the potential role of this process in the pathogenesis of Pb-associated myocardial injury.


Asunto(s)
Plomo , Neutrófilos , Ratones , Animales , Neutrófilos/metabolismo , Plomo/toxicidad , Miocitos Cardíacos/metabolismo , Elastasa de Leucocito/metabolismo
18.
J Environ Sci (China) ; 130: 85-91, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37032045

RESUMEN

At present, dramatically reduction of fossil fuel usage is regarded as a major initiative to achieve the carbon neutrality goal. Nevertheless, current energy policies are unlikely to achieve the climate goal without sacrificing economic development and people's livelihood because fossil fuels are currently the dominant energy source. As an environment-friendly manufacturing technology, three-dimensional printing (3DP) is flourishing and is considered beneficial to energy structure adjustment and industrial upgrading. Despite this, its potential to contribute to global carbon neutrality has not attracted enough attention. Herein, we explore the application of 3DP and its potential facilitating carbon neutrality from crucial sectors and applications including manufacturing, construction energy, livestock, and carbon capture and storage (CCS) technologies. The additive manufacturing and decentralized manufacturing characteristics of 3DP allow reducing greenhouse gas (GHG) emissions in manufacturing and construction sectors by optimized and lightweight designs, reduced material and energy consumption, and shortened transport processes. In addition, 3DP enables the precise manufacturing of customized complex structures and the expansion of functional materials, which makes 3DP an innovative alternative to the development of novel energy-related devices, cultured meat production technology, and CCS technologies. Despite this, the majority of applications of 3DP are still in an early stage and need further exploration. We call for further research to precisely evaluate the GHG emission reduction potential of 3DP and to make it better involved and deployed to better achieve carbon neutrality.


Asunto(s)
Carbono , Gases de Efecto Invernadero , Humanos , Impresión Tridimensional , Combustibles Fósiles
19.
J Environ Sci (China) ; 126: 494-505, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503776

RESUMEN

Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations, however, coexisting dissolved metal ions greatly interfere with the accuracy of particle size analysis. The purpose of this study is to develop an online technique that couples hollow fiber ultrafiltration (HFUF) with SP-ICP-MS to improve the accuracy and size detection limit of MCNs by removing metal ions from suspensions of MCNs. Through systematic optimization of conditions including the type and concentration of surfactant and complexing agent, carrier pH, and ion cleaning time, HFUF completely removes metal ions but retains the MCNs in suspension. The optimal conditions include using a mixture of 0.05 vol.% FL-70 and 0.5 mmol/L Na2S2O3 (pH = 8.0) as the carrier and 4 min as the ion cleaning time. At these conditions, HFUF-SP-ICP-MS accurately determines the sizes of MCNs, and the results agree with the size distribution determined by transmission electron microscopy, even when metal ions also are present in the sample. In addition, reducing the ionic background through HFUF also lowers the particle size detection limit with SP-ICP-MS (e.g., from 28.3 to 14.2 nm for gold nanoparticles). This size-based ion-removal principle provided by HFUF is suitable for both cations (e.g., Ag+) and anions (e.g., AuCl4-) and thus has good versatility compared to ion exchange purification and promising prospects for the removal of salts and macromolecules before single particle analysis.


Asunto(s)
Nanopartículas del Metal , Oro , Iones , Análisis Espectral , Ultrafiltración
20.
Chemphyschem ; 23(11): e202200149, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35470520

RESUMEN

Converting N2 to NH3 is an essential reaction but remains a great challenge for industries. Developing more efficient catalysts for N2 reduction under mild conditions is of vital importance. In this work, double transition metal atoms (TM=Mo, W, Nb and Ru) anchored on graphdiyne monolayer (TM2 @GDY) as electrocatalysts are designed, and the corresponding reaction mechanisms of N2 electroreduction are systematically investigated by means of first-principles calculations. The results show that the double TM atoms can be strongly anchored on the acetylenic ring of GDY and Ru2 @GDY exhibits the highest catalytic activity for NRR with a maximum free energy change of 0.55 eV through the enzymatic pathway. The significant charge transfer between the substrate and the adsorbed N2 molecule is responsible for the superior catalytic activity. This work could provide a new approach for the rational design of double-atom catalysts for NRR and other related reduction reactions.


Asunto(s)
Grafito , Nitrógeno , Catálisis , Grafito/química , Nitrógeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA