Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Pharmacogenet Genomics ; 34(6): 199-208, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848263

RESUMEN

OBJECTIVE: The CYP2D6 enzyme is crucial for the metabolism and disposition of a variety of drugs. This study was conducted to examine the relationship between CYP2D6 gene polymorphisms and the response to angiotensin receptor blocker (ARB)-based treatment in patients of Chinese Bai ethnicity with hypertension. METHODS: Seventy-two hypertensive adults from the Chinese Bai ethnic group, exhibiting systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg, were recruited. Targeted regional sequencing was utilized to genotype single nucleotide polymorphisms in the CYP2D6 gene, aiming to assess their frequency and to evaluate their influence on the therapeutic efficacy of ARB medications. RESULTS: Our research identified nine significant CYP2D6 polymorphisms associated with the efficacy of ARB treatment in the Bai hypertensive cohort. Specifically, patients possessing certain mutant genotype at rs111564371 exhibited substantially greater reductions in SBP and DBP, with P -values of 0.021 and 0.016, respectively, compared to those carrying the wild genotype. Additionally, these mutant genotype at rs111564371 and rs112568578 were linked to approximately 20% higher overall efficacy rates and a 10% increased achievement rate relative to the wild genotype. CONCLUSION: Our research with the Bai hypertensive group shows that certain CYP2D6 polymorphisms significantly influence ARB treatment outcomes. Mutations at rs111564371 led to better blood pressure control ( P -values: 0.021 for SBP, 0.016 for DBP), improving ARB efficacy by appromixately 20% and increasing treatment goal achievement by 10% over the wild-type genotype. STATEMENTS: Our investigation into CYP2D6 polymorphisms within the Bai hypertensive cohort marks a substantial advancement towards personalized healthcare, underscoring the pivotal influence of genetic constitution on the effectiveness of ARB therapy.


Asunto(s)
Citocromo P-450 CYP2D6 , Hipertensión , Polimorfismo de Nucleótido Simple , Humanos , Citocromo P-450 CYP2D6/genética , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Antagonistas de Receptores de Angiotensina/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Pueblo Asiatico/genética , Genotipo , Adulto , Antihipertensivos/uso terapéutico , Antihipertensivos/administración & dosificación , Antihipertensivos/farmacología , Resultado del Tratamiento
2.
Microb Cell Fact ; 23(1): 202, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026365

RESUMEN

BACKGROUND: Microbial genome sequencing and analysis revealed the presence of abundant silent secondary metabolites biosynthetic gene clusters (BGCs) in streptomycetes. Activating these BGCs has great significance for discovering new compounds and novel biosynthetic pathways. RESULTS: In this study, we found that ovmZ and ovmW homologs, a pair of interdependent transcriptional regulators coding genes, are widespread in actinobacteria and closely associated with the biosynthesis of secondary metabolites. Through co-overexpression of native ovmZ and ovmW in Streptomyces neyagawaensis NRRL B-3092, a silent type II polyketide synthase (PKS) gene cluster was activated to produce gephyromycin A, tetrangomycin and fridamycin E with the yields of 22.3 ± 8.0 mg/L, 4.8 ± 0.5 mg/L and 20.3 ± 4.1 mg/L respectively in the recombinant strain of S.ne/pZnWn. However, expression of either ovmZ or ovmW failed to activate this gene cluster. Interestingly, overexpression of the heterologous ovmZ and ovmW pair from oviedomycin BGC of S. ansochromogenes 7100 also led to awakening of this silent angucyclinone BGC in S. neyagawaensis. CONCLUSION: A silent angucyclinone BGC was activated by overexpressing both ovmZ and ovmW in S. neyagawaensis. Due to the wide distribution of ovmZ and ovmW in the BGCs of actinobacteria, co-overexpression of ovmZ and ovmW could be a strategy for activating silent BGCs, thus stimulating the biosynthesis of secondary metabolites.


Asunto(s)
Antraquinonas , Antibacterianos , Familia de Multigenes , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos/biosíntesis , Antraquinonas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Metabolismo Secundario/genética , Anguciciclinas y Anguciclinonas
3.
Ann Clin Microbiol Antimicrob ; 23(1): 41, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704577

RESUMEN

BACKGROUND: Infections caused by linezolid-resistant enterococci (LRE) are clinically difficult to treat and threaten patient health. However, there is a lack of studies on long time-span LRE strains in China. For this reason, our study comprehensively revealed the resistance mechanisms of LRE strains collected in a Chinese tertiary care hospital from 2011 to 2022. METHODS: Enterococcal strains were screened and verified after retrospective analysis of microbial data. Subsequently, 65 LRE strains (61 Enterococcus faecalis and 4 Enterococcus faecium, MIC ≥ 8 µg/ml), 1 linezolid-intermediate Enterococcus faecium (MIC = 4 µg/ml) and 1 linezolid-susceptible Enterococcus faecium (MIC = 1.5 µg/ml) were submitted for whole-genome sequencing (WGS) analysis and bioinformatics analysis. RESULTS: The optrA gene was found to be the most common linezolid resistance mechanism in our study. We identified the wild-type OptrA and various OptrA variants in 98.5% of LRE strains (61 Enterococcus faecalis and 3 Enterococcus faecium). We also found one linezolid-resistant Enterococcus faecium strain carried both optrA and cfr(D) gene, while one linezolid-resistant Enterococcus faecium only harbored the poxtA gene. Most optrA genes (55/64) were located on plasmids, with impB-fexA-optrA, impB-fexA-optrA-erm(A), fexA-optrA-erm(A), and fexA-optrA segments. A minority of optrA genes (9/64) were found on chromosomes with the Tn6674-like platform. Besides, other possible linezolid resistance-associated mechanisms (mutations in the rplC and rplD genes) were also found in 26 enterococcal strains. CONCLUSIONS: Our study suggested that multiple mechanisms of linezolid resistance exist among clinical LRE strains in China.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Enterococcus faecalis , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Linezolid , Pruebas de Sensibilidad Microbiana , Secuenciación Completa del Genoma , Linezolid/farmacología , China/epidemiología , Humanos , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/epidemiología , Enterococcus faecium/genética , Enterococcus faecium/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/genética , Antibacterianos/farmacología , Estudios Retrospectivos , Enterococcus/efectos de los fármacos , Enterococcus/genética , Proteínas Bacterianas/genética , Genoma Bacteriano , Epidemiología Molecular , Centros de Atención Terciaria , Genómica
4.
Lipids Health Dis ; 23(1): 106, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616260

RESUMEN

BACKGROUND: Dyslipidemia, a significant risk factor for atherosclerotic cardiovascular disease (ASCVD), is influenced by genetic variations, particularly those in the low-density lipoprotein receptor (LDLR) gene. This study aimed to elucidate the effects of LDLR polymorphisms on baseline serum lipid levels and the therapeutic efficacy of atorvastatin in an adult Han population in northern China with dyslipidemia. METHODS: In this study, 255 Han Chinese adults receiving atorvastatin therapy were examined and followed up. The 3' untranslated region (UTR) of the LDLR gene was sequenced to identify polymorphisms. The associations between gene polymorphisms and serum lipid levels, as well as changes in lipid levels after intervention, were evaluated using the Wilcoxon rank sum test, with a P < 0.05 indicating statistical significance. Assessment of linkage disequilibrium patterns and haplotype structures was conducted utilizing Haploview. RESULTS: Eleven distinct polymorphisms at LDLR 3' UTR were identified. Seven polymorphisms (rs1433099, rs14158, rs2738466, rs5742911, rs17249057, rs55971831, and rs568219285) were correlated with the baseline serum lipid levels (P < 0.05). In particular, four polymorphisms (rs14158, rs2738466, rs5742911, and rs17249057) were in strong linkage disequilibrium (r2 = 1), and patients with the AGGC haplotype had higher TC and LDL-C levels at baseline. Three polymorphisms (rs1433099, rs2738467, and rs7254521) were correlated with the therapeutic efficacy of atorvastatin (P < 0.05). Furthermore, carriers of the rs2738467 T allele demonstrated a significantly greater reduction in low-density lipoprotein cholesterol (LDL-C) levels post-atorvastatin treatment (P = 0.03), indicating a potentially crucial genetic influence on therapeutic outcomes. Two polymorphisms (rs751672818 and rs566918949) were neither correlated with the baseline serum lipid levels nor atorvastatin's efficacy. CONCLUSIONS: This research outlined the complex genetic architecture surrounding LDLR 3' UTR polymorphisms and their role in lipid metabolism and the response to atorvastatin treatment in adult Han Chinese patients with dyslipidemia, highlighting the importance of genetic profiling in enhancing tailored therapeutic strategies. Furthermore, this investigation advocates for the integration of genetic testing into the management of dyslipidemia, paving the way for customized therapeutic approaches that could significantly improve patient care. TRIAL REGISTRATION: This multicenter study was approved by the Ethics Committee of Xiangya Hospital Central South University (ethics number K22144). It was a general ethic. In addition, this study was approved by The First Hospital of Hebei Medical University (ethics number 20220418).


Asunto(s)
Dislipidemias , Polimorfismo Genético , Adulto , Humanos , Atorvastatina/uso terapéutico , Regiones no Traducidas 3'/genética , LDL-Colesterol , Dislipidemias/tratamiento farmacológico , Dislipidemias/genética , China
5.
Gene ; 916: 148426, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38575101

RESUMEN

Since late 2019, COVID-19 has significantly impacted the world. Understanding the evolution of SARS-CoV-2 is crucial for protecting against future infectious pathogens. In this study, we conducted a comprehensive chronological analysis of SARS-CoV-2 evolution by examining mutation prevalence from the source countries of VOCs: United Kingdom, India, Brazil, South Africa, plus two countries: United States, Russia, utilizing genomic sequences from GISAID. Our methodological approach involved large-scale genomic sequence alignment using MAFFT, Python-based data processing on a high-performance computing platform, and advanced statistical methods the Maximal Information Coefficient (MIC), and also Long Short-Term Memory (LSTM) models for correlation analysis. Our findings elucidate the dynamics of SARS-CoV-2 evolution, highlighting the virus's changing behaviour over various pandemic stages. Key results include the discovery of three temporal mutation patterns-lineage distinct, long-span, and competitive mutations-with varying levels of impact on the virus. Notably, we observed a convergence of advantageous mutations in the spike protein, especially in the later stages of the pandemic, indicating a substantial evolutionary pressure on the virus. One of the most significant revelations is the predominant role of natural immunity over vaccination-induced immunity in driving these evolutionary changes. This emphasizes the critical need for regular vaccine updates to maintain efficacy against evolving strains. In conclusion, our study not only sheds light on the evolutionary trajectory of SARS-CoV-2 but also underscores the urgency for robust, continuous global data collection and sharing. It highlights the necessity for rapid adaptations in medical countermeasures, including vaccine development, to stay ahead of pathogen evolution. This research provides valuable insights for future pandemic preparedness and response strategies.


Asunto(s)
COVID-19 , Evolución Molecular , Mutación , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Humanos , COVID-19/epidemiología , COVID-19/virología , Sudáfrica/epidemiología , India/epidemiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Brasil/epidemiología , Reino Unido/epidemiología , Federación de Rusia/epidemiología , Genoma Viral , Filogenia , Estados Unidos/epidemiología
6.
mSphere ; 9(4): e0081623, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38470044

RESUMEN

Anaerostipes hadrus (A. hadrus) is a dominant species in the human gut microbiota and considered a beneficial bacterium for producing probiotic butyrate. However, recent studies have suggested that A. hadrus may negatively affect the host through synthesizing fatty acid and metabolizing the anticancer drug 5-fluorouracil, indicating that the impact of A. hadrus is complex and unclear. Therefore, comprehensive genomic studies on A. hadrus need to be performed. We integrated 527 high-quality public A. hadrus genomes and five distinct metagenomic cohorts. We analyzed these data using the approaches of comparative genomics, metagenomics, and protein structure prediction. We also performed validations with culture-based in vitro assays. We constructed the first large-scale pan-genome of A. hadrus (n = 527) and identified 5-fluorouracil metabolism genes as ubiquitous in A. hadrus genomes as butyrate-producing genes. Metagenomic analysis revealed the wide and stable distribution of A. hadrus in healthy individuals, patients with inflammatory bowel disease, and patients with colorectal cancer, with healthy individuals carrying more A. hadrus. The predicted high-quality protein structure indicated that A. hadrus might metabolize 5-fluorouracil by producing bacterial dihydropyrimidine dehydrogenase (encoded by the preTA operon). Through in vitro assays, we validated the short-chain fatty acid production and 5-fluorouracil metabolism abilities of A. hadrus. We observed for the first time that A. hadrus can convert 5-fluorouracil to α-fluoro-ß-ureidopropionic acid, which may result from the combined action of the preTA operon and adjacent hydA (encoding bacterial dihydropyrimidinase). Our results offer novel understandings of A. hadrus, exceptionally functional features, and potential applications. IMPORTANCE: This work provides new insights into the evolutionary relationships, functional characteristics, prevalence, and potential applications of Anaerostipes hadrus.

7.
Front Microbiol ; 15: 1416879, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881667

RESUMEN

Background: Infant botulism is caused by botulinum neurotoxin (BoNT), which is mainly produced by Clostridium botulinum. However, there is a lack of longitudinal cohort studies on infant botulism. Herein, we have constructed a cross-sectional and longitudinal cohort of infants infected with C. botulinum. Our goal was to reveal the differences in the intestinal microbiota of botulism-infected and healthy infants as well as the dynamic changes over time through multi-omics analysis. Methods: We performed 16S rRNA sequencing of 20 infants' stools over a period of 3 months and conducted whole genome sequencing of isolated C. botulinum strains from these laboratory-confirmed cases of infant botulism. Through bioinformatics analysis, we focused on the changes in the infants' intestinal microbiota as well as function over time series. Results: We found that Enterococcus was significantly enriched in the infected group and declined over time, whereas Bifidobacterium was significantly enriched in the healthy group and gradually increased over time. 18/20 isolates carried the type B 2 botulinum toxin gene with identical sequences. In silico Multilocus sequence typing found that 20\u00B0C. botulinum isolates from the patients were typed into ST31 and ST32. Conclusion: Differences in intestinal microbiota and functions in infants were found with botulism through cross-sectional and longitudinal studies and Bifidobacterium may play a role in the recovery of infected infants.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39160620

RESUMEN

Cold seeps in the deep sea are closely linked to energy exploration as well as global climate change. The alkane-dominated chemical energy-driven model makes cold seeps an oasis of deep-sea life, showcasing an unparalleled reservoir of microbial genetic diversity. Here, by analyzing 113 metagenomes collected from 14 global sites across 5 cold seep types, we present a comprehensive Cold Seep Microbiomic Database (CSMD) to archive the genomic and functional diversity of cold seep microbiomes. The CSMD includes over 49 million non-redundant genes and 3175 metagenome-assembled genomes, which represent 1895 species spanning 105 phyla. In addition, beta diversity analysis indicates that both the sampling site and cold seep type have a substantial impact on the prokaryotic microbiome community composition. Heterotrophic and anaerobic metabolisms are prevalent in microbial communities, accompanied by considerable mixotrophs and facultative anaerobes, highlighting the versatile metabolic potential in cold seeps. Furthermore, secondary metabolic gene cluster analysis indicates that at least 98.81% of the sequences potentially encode novel natural products, with ribosomally synthesized and post-translationally modified peptides being the predominant type widely distributed in archaea and bacteria. Overall, the CSMD represents a valuable resource that would enhance the understanding and utilization of global cold seep microbiomes.


Asunto(s)
Archaea , Metagenoma , Microbiota , Metagenoma/genética , Archaea/genética , Archaea/metabolismo , Archaea/clasificación , Microbiota/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Productos Biológicos/metabolismo , Frío , Filogenia , Agua de Mar/microbiología , Metagenómica/métodos , Biodiversidad
9.
Imeta ; 3(4): e226, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135683

RESUMEN

A comprehensive immune landscape for Brucella infection is crucial for developing new treatments for brucellosis. Here, we utilized single-cell RNA sequencing (scRNA-seq) of 290,369 cells from 35 individuals, including 29 brucellosis patients from acute (n = 10), sub-acute (n = 9), and chronic (n = 10) phases as well as six healthy donors. Enzyme-linked immunosorbent assays were applied for validation within this cohort. Brucella infection caused a significant change in the composition of peripheral immune cells and inflammation was a key feature of brucellosis. Acute patients are characterized by potential cytokine storms resulting from systemic upregulation of S100A8/A9, primarily due to classical monocytes. Cytokine storm may be mediated by activating S100A8/A9-TLR4-MyD88 signaling pathway. Moreover, monocytic myeloid-derived suppressor cells were the probable contributors to immune paralysis in acute patients. Chronic patients are characterized by a dysregulated Th1 response, marked by reduced expression of IFN-γ and Th1 signatures as well as a high exhausted state. Additionally, Brucella infection can suppress apoptosis in myeloid cells (e.g., mDCs, classical monocytes), inhibit antigen presentation in professional antigen-presenting cells (APCs; e.g., mDC) and nonprofessional APCs (e.g., monocytes), and induce exhaustion in CD8+ T/NK cells, potentially resulting in the establishment of chronic infection. Overall, our study systemically deciphered the coordinated immune responses of Brucella at different phases of the infection, which facilitated a full understanding of the immunopathogenesis of brucellosis and may aid the development of new effective therapeutic strategies, especially for those with chronic infection.

10.
Structure ; 32(8): 1055-1067.e6, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39013463

RESUMEN

The recently emerged BA.2.86, JN.1, EG.5, EG.5.1, and HV.1 variants have a growth advantage. In this study, we explore the structural bases of receptor binding and immune evasion for the Omicron BA.2.86, JN.1, EG.5, EG.5.1, and HV.1 sub-variants. Our findings reveal that BA.2.86 exhibits strong receptor binding, whereas its JN.1 sub-lineage displays a decreased binding affinity to human ACE2 (hACE2). Through complex structure analyses, we observed that the reversion of R493Q in BA.2.86 receptor binding domain (RBD) plays a facilitating role in receptor binding, while the L455S substitution in JN.1 RBD restores optimal affinity. Furthermore, the structure of monoclonal antibody (mAb) S309 complexed with BA.2.86 RBD highlights the importance of the K356T mutation, which brings a new N-glycosylation motif, altering the binding pattern of mAbs belonging to RBD-5 represented by S309. These findings emphasize the importance of closely monitoring BA.2.86 and its sub-lineages to prevent another wave of SARS-CoV-2 infections.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales , COVID-19 , Evasión Inmune , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , COVID-19/inmunología , COVID-19/virología , COVID-19/metabolismo , Sitios de Unión , Modelos Moleculares , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Mutación
12.
Genet. mol. biol ; 34(1): 136-141, 2011. graf, tab
Artículo en Inglés | LILACS | ID: lil-573719

RESUMEN

The identification of expressed genes involved in sexual precocity of the mitten crab (Eriocheir sinensis) is critical for a better understanding of its reproductive development. To this end, we constructed a cDNA library from the rapid developmental stage of testis of E. sinensis and sequenced 3,388 randomly picked clones. After processing, 2,990 high-quality expressed sequence tags (ESTs) were clustered into 2,415 unigenes including 307 contigs and 2,108 singlets, which were then compared to the NCBI non-redundant (nr) protein and nucleotide (nt) database for annotation with Blastx and Blastn, respectively. After further analysis, 922 unigenes were obtained with concrete annotations and 30 unigenes were found to have functions possibly related to the process of reproduction in male crabs - six transcripts relevant to spermatogenesis (especially Cyclin K and RecA homolog DMC1), two transcripts involved in nuclear protein transformation, two heat-shock protein genes, eleven transcription factor genes (a series of zinc-finger proteins), and nine cytoskeleton protein-related genes. Our results, besides providing valuable information related to crustacean reproduction, can also serve as a base for future studies of reproductive and developmental biology.


Asunto(s)
Animales , Masculino , Braquiuros/genética , Perfilación de la Expresión Génica , Reproducción , China , ADN Complementario , Etiquetas de Secuencia Expresada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA